
=AD-A122 584 FUNAMENTAL STUDIES IN SCATTERIND FROM ROUGH 
SURFACES 2

(U) AP PLIED SCIENCE ASSOCIATES INC APES NC G S BROWN
OCT 82 RADC-TR-82-262 F19628-81-C-0084

UNCLASSIFIED F/G 20/6 NLIEEIhIIIIIIIE
IIEIIIEIIIIEEE

mhhmomhhhmmhhhIIIEIIIIIIII
EIIIIIII*EEIIE
EIIIIIIIIIIu-



L 11 8 111125

"'I- I~iJ*-IIIII
1..8

MICROCOPY RESOLLITION T[ l ' iART

N N N



RADC-TR.82-262
Interim Report
October 1982

FUNDAMENTAL STUDIES IN SCATTERING
FROM ROUGH SURFACES

Applied Science Associates, Inc.

0C

Gary S. Brown

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

DEC 2 0 1982

>- A
Q- ROME AIR DEVELOPMENT CENTER A
SAir Force Systems Command

GrIffiss Air Force Base, NY 13441
N N.

: b 12 20 09



This reportohas been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

RADC-TR-82-262 has been reviewed and is approved for publication.

APPROVED:

ROBERT J. PAPA
Project Engineer

APPROVED: $ (,...- Q

ALLAN C. SCHELL, Chief
Electromagnetic Sciences Division

FOR THE COMMANDER:,/) ,

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removes from the RADC
mailing list, or if the addressee is no longer employed by your organization,

please notify RADC.(EECT) Hanscom AFB MA 01731. This will assist.us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (VhS. OWN. Efnatld)

REPORT DOCUMENTATION PAGE BEOR COPEIGFR

RADC-TR- 2-2622. GOVT ACCESSION NO.1 1. RE9CIPIENT'S CATALOG NUMINER

4. TorLI[(end 5.jhf) S. TYPE or REPORT. apal" o COVERED
Interim Report

FUNDAMENTAL STUDIES IN SCATTERING FROM 8 Jul 81 - 8 Jul 82
ROUGH SURFACES 6. PERFORMING 010. REPORT MNMBER

N/A
7. AuTNooRPj B. CONTRACT OR GRANT NUMFBERWS)

Gary S. Brown F19628-81-C-0084

9. PERFORMING ORGANIZATION NAMIE ANO ADDRESS I0. PROGRAM ELEMENT~ PROJECT. TASK
AREA & WORK UNIT NUMGIERS

Applied Science Associates, Inc. 61102F
105 East Chatham Street 2305J441
Apex NC 27502

1 1. CONTROLLING OFFICE NAME AND ADDRESS 13. REPORT OATE

RomeAirDeveopmnt ente (ECT)October 1982
Rome ir Dveloment ente (EET)I1. NUMBERf OF PAGES

Hanscom AFB MA 01731 122
IT. MONtowRING AGENCY NAME & AODRESS(iI different from. Corittoling Office) IS. SECURITY CLASS. (of this rePort)

UNCLASSIFIED
Same ISA. OIECL ASS$IP C ATION/OOWNGRAOING

IS. DISTRIGUTION STATEMENT (of this Repor)

Approved for public release; distribution unlimited.

I?. OISTRIUUTION STATEMENT (a1'tho abstract oeterod in Stock 20, lifdifforent fee. Rport)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Robert J. Papa (EECT)

It. KEY WORDS (Contlmo. an reverse side If aecssar end Identify by block ftImber)

Electromagnetic Scattering
Rough Surface Scattering
Applied Probability Theory
Random Boundary Value Problems

40. ABISTRACT (Cont"nue en "ever"e sido It necessary end Identifyp by block nionre)

kThis report presents interim results of a study to ; ~ for multiple
scattering in the theoretical modeling of scattering fr.... rough surfaces.
Based on the magnetic field integralequation for the current induced on
a perfectly conducting rough surface, at-space integral equation for the
stochastic transform of the curfent is derived and discussed. The mean
and variance of the scattered field is shown to be directly obtainable
from the stochastic transform of tb~e current. Limiting cases of a gently -

OD Ij0,,R3 1473 EDITION OF I NOV 55 IS OBS0LETE 'UNCLASSIFIED

SECURITY CLASSIFICATION OF 11415 PAGE (Mena. Data krte~r



UNCLASSIFIED
SECURITV CLASWIPCATIOM OF TNIS PAGC(Whem 00 811e1000d)

vndulating surface and a surface which is uniformly rough, i.e. a
pseudo white noise surface, are considered in detail., An approximate ap-
proach is presented for determining the mean or coherent scattered field
produced by a uniformly rough surface and the resulting solution clearly
shows the important effects of multiple scattering. For the class of
surfaces for which decorrelation does not imply statistical independence,
it is found that the incoherent power scattered by such surfaces com-
prises two parts. The first part is the conventional diffuse term while
the second part is specular in that it exists only at the specular
scattering angle. For a gently undulating exponentially distributed sur-
face, the incoherent specular power is found to exceed the coherent
scattered power when the Rayleigh parameter is larger than unity. These
results have significant implications with regard to the class of sur-
face statistics to be considered for fitting measured surface statistics.
Finally, the far field approximation as it applies to rough surface
scattering is examined in detail for arbitrarily distributed surfaces.
The failure of the approximation when the incident illumination is un-
bounded is explained. For a bounded incident plane wave, the far field
approximation for the mean scattered field is shown to be valid provided
that the illuminated area on the mean surface is very large compared to
the wavelength squared. The validity of the conventional far field ap-
proximation for the variance of the scattered field requires a large
illuminated area which also encompasses many decorrelation lengths on the
surface. The results obtained relative to the validity of the far field
approximation are general in that they hold for any degree of multiple
scattering on the surface.

UNCLASSIFIED

SECURITY CLAWP#FICA?406 OF ~' T-", DACI~en bats EE)



TABLE OF CONTENTS

Page

1.0 INTRODUCTION .. ................ .......... 1-1

Summary of Results .. ................ ....... 1-3

2.0 A STOCHASTIC FOURIER TRANSFORM APPROACH TO SCATTERING

FROM PERFECTLY CONDUCTING RANDOMLY ROUGH SURFACES .. .. ...... 2-1

Abstract .. ................ ............. 2-1

Introduction and Summary .. ............... ..... 2-1

Approach Rationale .. ............... ........ 2-4

Detailed Development .. ................ ...... 2-9

Discussion .. ................ ........... 2-16

Limiting Cases .. ................ ......... 2-19

Gently Undulating Surface (. >> X 0) .. ... ..... ...... 2-19

Uniformly Rough Surface (Z << X 0) .. ... ..... ....... 2-23

Acknowledgements .. ............... ......... 2-28

References .. ............... ............. 2-28

3.0 NEW RESULTS ON COHERENT SCATTERING FROM RANDOMLY

ROUGH CONDUCTING SURFACES. .. .............. ..... 3-1

Abstract .. ............... ............. 3-1

Introduction and Summary .. .............. ...... 3-1

Determination of the Surface Current. ... ............ 3-7

The Average Scattered Field .. .. .................. 3-14

Numerical Results and Interpretation. .. .............. 3-17

Conclusions. .. ................ .......... 3-20

Acknowledgements .. .............. .......... 3-22

References .. ............... ............. 3-23

4.0 SCATTERING FROM A CLASS OF RANDOMLY ROUGH SURFACES. .. ...... 4-1

Abstract .. ................ ............. 4-1

Introduction and Summary .. ............... ..... 4-1

Scattering Analysis. .. .............. ........ 4-4

Discussion .. .............. .............. 4-11

Numerical Example. .. ............... ........ 4-12

Acknowledgements .. ............... ......... 4-16

References .. .............. .............. 4-16

i



F!

TABLE OF CONTENTS

Page

5.0 SCATTERING FROM RANDOMLY ROUGH SURFACES AND
THE FAR FIELD APPROXIMATION ....... .................... ... 5-1

Abstract ............ ............................. ... 5-1

Introduction and Sumary ........ ..................... ... 5-2

Background ............ ............................ ... 5-5

Exact Results for Unbounded Illumination ...... ............. 5-1i

Comparison of Exact and Far Field Results .... ............. ... 5-16

Bounded Illuminat ion ......... ....................... ... 5-19

Acknowledgements .......... ......................... ... 5-26

References ............ ............................ ... 5-27

ii



1.0 INTRODUCTION

The overall objective of this research is to provide models for scatter-

ing from randomly rough terrain which can be used with a high degree of con-

fidence in systems engineering applications. In order to accomplish this goal,

two avenues of approach are actively being pursued. The first approach com-

prises the refinement of existing theories while the second approach entails

the development of new theories which go beyond existing models.

At first glance it might appear that such a two-pronged approach does not

represent an efficient use of resources; however, this is not true. For

example, one may argue that existing theories should be thoroughly tested

before expending efforts on advanced techniques. However, the very nature of

the problem precludes a rigorous and complete validation of existing models

because these models are based upon mathematical simplifications and approxima-

tion which are not fully understood. That is, a full understanding of the

limitations of existing models will only come about when these models have

been improved upon by overcoming some of their fundamental inadequacies. Con-

versely, existing models should be developed and refined to the fullest extent

possible so that they can be compared to measurements for the purpose of moving

toward some understanding of their capabilities and limitations.

In research of this nature where there is an immediate need for accurate

models, one must be constantly alert to the pittfalls of using inherently

limited models simply because they produce numbers. In fact, the technical

literature on rough surface scattering is permeated with the application of

models to situations which are totally outside the range of validity of the

models. The apparent success of such efforts is due in large measure to the

clever selection of the surface statistics rather than the true accuracy of

the scattering model. This has led to a great deal of confusion as to which
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model works for what class of surfaces and, most importantly, why. Since it

is extremely doubtful that the kind of surface measurements necessary as inputs

to the model will ever be available, the only alternative is to turn to theo-

retical approaches for improving existing models. That is, for scattering

situations where there is significant concern that the existing models may no[

be valid, it would appear that improvement of the theory is the only viable

approach. For this reason, the majority of our efforts during this period have

been devoted toward developing and improving upon our fundamental knowledge of

rough surface scattering.

Very often when one conducts research directed toward fundamental issues

it is of a very esoteric nature and it has very limited practical application.

However, such is not the case with this research. In fact, after establishing

some very basic techniques, it is shown that these can be used immediately to

derive results which are directly applicable to real problems. For example,

one often sees in the technical literature on random surface scattering use

made of approximations derived from deterministic scattering theory. While

such approximations must hold on a sample by sample basis, it is not clear that

they pass unaltered through the averaging process necessary to construct the

mean scattered field and power. With the techniques developed herein, it is

possible to follow these approximations all the way through the averaging proces.

and therefore rigorously derive their impact upon the statistical moments of

the scattered field. Thus, while some of the topics addressed in this interim

report may appear to be far removed from useful terrain scattering models, it

must be remembered that they are the beginnings of an attempt to build a solid

foundation for rough surface scattering theory which has heretofore been less

than satisfactory.

1-2



Summary of Results

In Section 2.0 an integral equation for the stochastic Fourier transform

of the current induced on a perfectly conducting rough surface by an incident

plane wave is developed. The stochastic Fourier transform of the current is

defined as the multidimensional Fourier transform with respect to all stochastic

surface characteristics upon which the current depends, i.e. it is a transform

from V n,n,1,2, . . - , space to nn=0,l,2,. - , space where vnC represents the

nth order directional derivative of the surface height C . The integral equa-

tion is developed by multiplying the magnetic field integral equation for the

current in coordinate space by a Fourier kernel involving all orders of sur-

face height derivatives and their associated transform variables and then aver-

aging this equation. By converting averages over VnC to convolutions in k -

space, there results a singular integral equation of the first kind and of

infinite dimensions. The merit of this approach centers about the fact that

one can clearly see, in the integral equation, the effect of all the higher

order surface height derivatives. Furthermore, it is possible to truncate

the infinite dimensionality of the integral equation by retaining only those

orders of surface height derivatives which have a significant variance. Rela-

tionships are also developed which show how the stochastic Fourier transform

of the current may be employed to determine the statistical moments of the

scattered field. Limiting cases of a gently undulating surface and a uniformly

rough or pseudo white noise surface are explored relative to the average scattered

field generated by them. For the uniformly rough surface, an exact one dimen-

sional singular integral equation for the average scattered field is obtained

and it is found to be very similar to the first hierarchy integral equation

resulting from the diagrammatic technique. Contrary to perturbational tech-

niques, this result does not predict that a uniformly rough or pseudo white noise
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surface will act as a perfect reflector.

In Section 3.0 an approximate technique is developed for estimating the

average field scattered by a uniformly rough surface. The analysis is based

on the remarkable similarity between the dominant terms in the magnetic field

integral equation for the current for both the uniformly rough and the gently

undulating surfaces, i.e. the only essential difference relative to the mean

scattered field is the effect of the grossly different surface correlation

lengths for the two cases. This similarity suggests that if the small corre-

lation length associated with the uniformly rough surface could be mathematically

introduced into the description of the scattering associated with the gently

undulating surface and if the latter scattering problem could be solved then

it 6hould be a good approximation to the uniformly rough surface scattering

process. The essence of the approach is mathematical similitude; that is, the

technique in itself does not necessarily have any physical interpretation.

Consequently, it is absolutely essential that the results are capable of being

put into oae to one correspondence with one's physical understanding of the

scattering process. To accomplish the introduction of the artificial corre-

lation length into the scattering description for the gently undulating sur-

face, the gently undulating surface is replaced by a discrete approximation

comprising large, non-overlapping, flat areas having random elevations with

respect to the mean planar surface. The average scattered field produced by

this approximate surface is found to depend upon the degree of correlation

between adjacent large flat areas. It is at this point in the development

that the artificial correlation length is introduced, i.e. rather than taking

the large areas to be highly correlated corresponding to the true gently undu-

lating surface they are, instead, taken to be uncorrelated. The resulting

average scattered field is subsequently found to depend upon the number of
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interacting areas and their height variance. Furthermore, the results show that

the number of interacting areas which give rise to a maximum scattered field

increases with surface roughness. Physically, this observation corresponds to

the fact that as the roughness increases so does t e degree of multiple scat-

tering on the surface, i.e. an increase in multiple scattering implies an

increase in the number of effective interacting areas on the discrete artifi-

cial or substitute surface. Thus, the results of the analysis do indeed appear

to have a very good physical basis. Comparison of numerical results with ap-

proximate results from the diagrammatic approach show very good agreement over

the range of Rayleigh parameter where one should expect agreement.

In Section 4.0 the problem of scattering from surfaces which are neither

Gaussian distributed nor do they become statistically independent as they

become decorrelated is considered. This is a very important practical problem

because there is certainly no guarantee that real terrain is adequately repre-

sented by a surface roughness which is Gaussian distributed. The stochastic

Fourier transform of the current, developed in Section 2.0, is used to derive

exact expressions for the mean and variance of the scattered field. For sur-

faces in which decorrelation does not imply statistical independence it is

found that the variance of the scattered field or the incoherent power has two

distinct parts. The first part is the conventional so-called diffuse power

which is related to the spatial Fourier transform of the two point joint char-

acteristic function for the random surface characteristics. The second part

of the incoherent power is specular in its angular behavior and it is determined

by the difference between the two point joint characteristic functions for de-

correlation and statistical independence. A numerical comparison of this

specular incoherent power term with the mean scattered field for a gently undu-

lating exponentially distributed surface is also presented. When the Rayleigh
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parameter is much smaller than unity, the power associated with the mean scat-

tered field is the larger quantity. Near a Rayleigh parameter value of one,

the two quantities are nearly equal. When the Rayleigh parameter greatly

exceeds one, the incoherent specular power becomes much larger than the power

associated with the mean scattered field. The importance of these results to

the conventional interpretation of scattering measurements are discussed in

depth. These results also indicate that extreme caution should be used in

fitting measured surface statistics to functional forms for the probability

density function in which decorrelation does not imply statistical indepen-

dence.

Section 5.0 considers the applicability of the far field approximation to

scattering from infinite rough surfaces when the incident plane wave illumina-

tion is either bounded or unbounded. This also is a very important theoreti-

cal and practical problem because rough surface scattering measurements are

always interpreted using this approximation and yet its validity has only been

partially demonstrated for very special surfaces. The analysis once again

uses the stochastic Fourier transform of the current in conjunction with the

exact expression for the scattered field. For the case of an incident plane

wave which is unbounded, it is shown that the mean or average scattered field

is a redirected plane wave propagating in the specular direction. The ampli-

tude of this plaae wave is attenuated relative to the incident field by the

effects of the surface roughness. Furthermore, its polarization is dependent

upon the multiple scattering processes occurring on the surface. The variance

of the scattered field or the incoherent power in any one direction is found

to depend upon a weighted average of the angular spectrum over all angles (both

visible and iuvisible) or directions. This result clearly shows that the con-

cept of a far field is not applicable to the case of unbounded illumination

1-6



because in the far field approxim3tion the scattered power should be d ter-

mined by one and only one Fourier component of the angular spectrum. When

the incident illumination is bounded, the far field approximation for the mean

scattered field is found to be valid provided the cross sectional area of the

incident field is very large compared to the 'uare of the electromagnetic

wavelength. This caveat is necessary to insure that the difference between

the support of the incident illumination and the support of the current is not

significant. These two supports will be different when multiple scattering on

the surface is important. For the variance of the scattered field, it is

further necessary to assume that the support of the incident illuminaiton encom-

passes many surface decorrelation intervals in order to bring the exact result

into agreement with the far field approximation. Finally, the exact results

are used to show why the far field approximation breaks down when the incident

illumination is unbounded.

All of the following material has either been accepted for publication in

journals or it is presently in the review process for publication in a journal.

Consequently, the style of the sections is tailored to the demands of the par-

ticular journal. In order to avoid a complete retype of the material, it was

decided to include it in this report as it was sent to a journal. This choice,

hopefully, will not be too confusing to the reader.
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A Stochastic Fourier Transform Approach To Scattering

From Perfectly Conducting Randomly Rough Surfaces

by

Gary S. Brown

Applied Science Associates, Inc.

Apex, North Carolina 27502

Abstract

An exact alternative approach to the diagrammatic technique for treating

scattering from rough surfaces is developed. The magnetic field integral equa-

tion for the current induced on the rough perfectly conducting surface is multi-

plied by a Fourier kernel involving all orders of surface height derivatives and

their associated transform variables. Averages of this weighted equation are

converted to convolutions in the transform domain. The result of this opera-

tion is a singular integral equation of the first kind of infinite dimensions

(because of the infinite number of height derivatives) for the stochastic Fourier

transform of the current. A procedure is developed for estimating the effects

of ignoring one or more surface height derivatives in terms of the range of

validity of the resulting approximate solution. Special limiting cases of

very gently undulating surfaces and uniformly rough surfaces are examined.

New and illuminating results are obtained for the latter case.

Introduction and Summary

There is a very definite need to move beyond the approximate rough surface

scattering solutions provided by physical optics and boundary perturbation the-

ory. The first clear indication of this need was the failure of physical optics

and perturbation theory to accurately predict the magnitude of the average field

[I] and acoustic pressure (2] scattered by a roughened water surface for large

surface roughness. Measurements of the incoherent average scattered power [3]

have also provided results which are not in agreement with an appropriate
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combination of the above noted single scattering approximations. Of coursv it

*is one thing to recognize the need for a less approximate solution but quite

another to obtain such a solution!

Recently, a significant advance toward this goal has been provided by the

work of Zipfel and DeSanto [4] and subsequent work by DeSanto 15,6]. The re-

sults obtained in these analyses were based upon two very important points

which should be emphasized. First, by recasting the coordinate space integral

equation in the transform domain, the authors were able to circumvent problems

associated with the stochastic nature of the coordinate space integral equation

for the "surface" Green's function. Second, by using cluster decomposition

and partial summation techniques it was possible to express the solution of

the transform space integral equation in terms of integral equations involving

successively higher orders of surface and field interaction. Numerical solu-

tion of the integral equation involving the first order interaction for the

average scattered field (the zeroth order interaction being the physical optics

approximation) has clearly shown the physical optics approximation to be inade-

quate for large surface roughmess and small correlation length [7]. The strength

of this result lay primarily in the rigorous nature of the approach and, con-

3equently, the generality of the solution. Unfortunately, the solution does

not lend itself to an obvious physical interpretation. Furthermore, it is also

not always easy to see the direct effect of the surface's statistical charac-

teristics in the higher order integral equations.

The purpose of this paper is to present an approach and a solution which

provides a bit more physical insight into certain aspects of the problem. In

particular, one of the strong points of this approach is that it allows a direct

correlation between surface statistical approximations and the range of validity

of the resulting solution. This is an important result because it allows one
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to estimate when an approximate solution is valid and when it breaks down based

upon the statistical characteristics of the rough surface.

The analysis is based upon the magnetic field integral equation (MFIE)

for the current induced on the surface of a perfectly conducting body. Since

any statistical moment of the scattered field can be obtained from knowledge

of the current, this is a logical starting point. A key element in this or any

analysis involving stochastic integral equations is the technique employed to

overcome the stochastic nature of the integral equation. The approach used

here is to multiply the MFIE by the Fourier kernel exp{jklt + j E k ..- VnC}

(where C(x,y) is the stochastic surface height, V?(x,y) are the stochastic

surface slopes, etc.) and then average the resulting equation over C, V , etc.

The averages, however, are converted to convolutions of the terms in the inte-

gral equation and the Fourier transform of the appropriate joint probability

density function for the stochastic variables C, VC, etc. Thus, whereas Zipfel

and DeSanto [4] used a coordinate space transform to overcome the difficulties

associated with the stochastic nature of the problem, this approach transforms

all of the stochastic variables (r, VC, etc.) into a non-stochastic space

(ki, k2 , etc.). The formal result of these and other manipulations are coupled

integral equations for the x and y components of the current which are Fredholm

equations of the first kind. The dimensionality of these two integral equations

is formally infinite because the current depends, in general, upon C, VC, etc.

The explicit dependence of the integral equations upon the surface statistics

is contained in the single and two-point joint characteristic functions for

the variables C, VC, etc. By examining the way in which the surface statistics

(<C2 >,<(V) 2>, etc.) appear in the characteristic functions, it is possible to

translate the neglect of higher order surface height derivatives directly into

criteria for the range of validity of the resulting approximate solution. An
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orderly procedure for relating mathematical simplifications to the surface

statistics is presented.

As an example of the power of this technique, it is applied to surfaces

having a correlation length much larger than the electromagnetic wavelength

(very gently undulating surfaces) and to surfaces having a correlation length

much smaller than a wavelength (uniformly rough surfaces). For very gently

undulating surfaces, the technique provides results which are in agreement with

the scalar single scattering or physical optics approximation. For uniformly

rough surfaces, the stochastic Fourier transform approach is found to yield

two parts to the slope normalized surface current, i.e. I (r)/l+ IVgl2  where

Js is the current. One part is found to be a function of only the stochastic

surface height while the other part depends on the surface height and slopes

but in such a manner as to contribute nothing to the average field scattered

by the surface. An integral equation for the average scattered field is derived

for the uniformly rough surface and it is found to be similar to the approximate

equation obtained previously by Zipfel and DeSanto [4). Finally, it is argued

that the gently undulating and uniformly rough cases provide lower and upper

bounds, respectively, on the average scattered field for a fixed height variance.

Approach Rationale

The stochastic surface height ?(x,y) is defined with respect to the z = 0

plane and is taken to be a zero mean statistically homogeneous

process, The region above the surface is free-space while the mediun be-

neath the interface is perfectly conducting. For a "sufficiently well behaved"

surface, the current Is induced on the surface by an incident magnetic field H

is given by the so-called magnetic field integral equation [8, pg. 354];

r 2n(r) x H (r) + n(r) X J (r ) x Vg( r- rI)] dS (1)

S
0

where fi(i) is the upward directed unit normal to the surface and g(Ir-r o) is
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proportional to the free space scalar Green's function, i.e.

' C+2 
2[

z1-o)-exp( - j ko -01o r 0 ioir

and k° - 21r/X 0 is the free-space wavenumber. The quantities Cx = 3/3x and

Cy - /ay are the x and y components of the surface slope. Expanding they

double cross product in (1), converting the surface integration to an integra-

tion over the z 0 plane thi-,ugh dS - v 7 7 +2+ drt , and multiplying

both sides of (1) by A + yields the following;

both sides x H (r) + fN ' V

where

.( + 2 +

+=+ n (r)

d = dx dY

dt d:0 dy0
0

and the integration is over the entire z °  0 plane. Since the current must

be tangential to the surface and Ct + 2' > 0 , N( )J(r o ) 0 0 and the

z-component of the current may be expressed in terms of the x and y components

as follows;

z, 0) l X ( 0 Yo Y 0)3

Substituting (3) in the right side of (2) yields two coupled integral equations

for 3 x() and Jy(). The coupling is a consequence of the term [N(0).1(ro)IVo0

2-5
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which, using (3) to eliminate J (r0 ) has the following x and y-components;z 0

o) q 0 0 yYoY qo0

where q0 is x° or yo . Thus, it is the x and y-components of (2) along with

(3) which provide the essential relationships for the vector components of the

current.

Having found the current, it is then possible to determine the far-zone

scattered electric field in the direction k and at a distance, Ro from the z =0

plane via the following relationship [8,pg. 361]

=× ()exp (j 10)

s J 0 g(Ro)s x ksx J r (5)
4n Or 0 s J

where r xxi +y9 +C(x,y)z, ks = k sx + k s + k z , dr = dxdy and the inte-

gration is over the z = 0 plane. Of particular importance however are the

statistical moments of the scattered field such as <Es > and <1Es, where <'>

denotes an average over all random quantities. In view of the factor exp(jk sz)

in (5), it would do no good to compute <J(r)> from (2) and (3) because the aver-

age of the product is not, in general, equal to the product of the averages.

One could multiply (2) and (3) by exp(j k sz) and average the resulting equa-

tions but the result would only be useful in computing <Es . That is, higher

order field moments would require a new solution of some appropriately tailored

form of (2) and (3). This type of reasoning leads to the conclusion that what

is needed is a one-time solution of (2) and (3) which could be used in (5) or

any order self-product of (5).

The average of (5) entails multiplying by the probability density function

(pdf) for all stochastic variables upon which J depends and then integrating

the product over all stochastic variables, e.g.
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dr dVC ... (6)

where it has been assumed that the order of integration (over rt in (5)] and

averaging can be arbitrarily interchanged. The surface slopes (VC), curva-

tures (V2), rate of change of curvatures (V34), etc. are included because, in

general, the current is a function of these stochastic variables. Starting

first with the integral over C in (6), it is obvious that this is identical to

the Fourier transform (with respect to J) of the product of the current and the

pdf. Since the Fourier transform of the product of two functions is the con-

volution of the transforms, the c-integration can be expressed as follows;

f ( " ( .)exp(j ksz t) dC

= 1 f i(-r kl9V C' V 2 1,. " " )Pl(kss-kl 'V 'V2C'" )dkl (7)--G

where the tilde denotes the Fourier transform with respect to . In a simi-

lar manner, the integrations over the slopes(VC), curvatures(V 2), etc. can

n
also be written as convolutions so that (6) becomes (with s = E i )

n i=l

<J()exp(j kszC)> lim 1 J. '~n (2w) n  "" (tkl2...')

n+12 + (8)
4..

i* P (k szkl-k29...,9 -k n)k1d 2... dkn(8

where kn is an n-dimensional transform vector associated with VnC and the tilde

implies Fourier transforms with respect to C, V1, V 2, etc. If the second
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moment of the scattered field, <IE 12> is desired, it may be obtained fromS

knowledge of the following products;

<3 6*) J* *(V](r')exptjk (ri)>-lim I..l3r ,k1 k2,... ,kq q sz () 2  " q t'1' n
(2,,) an fIf

. (k k -k k.. ,,*k' -kn,-kn ;r -t)dk1dk1...dkdkn
q n 2 2' 'nf2sz 1 sz 12' nf t ni n

(9)
where * denotes the complex conjugate and p2 (.) is the two-point joint prob-

ability density function. In obtaining the above result, use has been made of

the fact that F1J9(A,V ,--.)]-Ai q(-kl,- 2 ,-.-)* where F denotes the Fourier

transform operation. The Fourier transforms of the single and two point joint

probability density functions are the single and two point joint characteristic

functions, resnectively [9, pg. 2541.

It is obvious from (8) and (9) that if the Fourier transform of the cur-

rent with respect to the stochastic variables can be found then <E > and
s

<I-I12> may be determined by a straightforward integration of known functions.

Thus, the problem reduces to solving for the stochastic Fourier transform of

the current using (2) and (3). Unfortunately, one cannot simply take the

stochastic Fourier transform of both sides of (2) in a direct manner; such an

operation must be accomplished within the framework of probability theory.

That is, both sides of (2) are first multiplied by the stochastic Fourier ker-

nel exp{jk 1  + j ' kn+l@-ll and then averagedover all stochastic variables.
nMl

The averaging operation weights each term in (2) by an appropriate probability

density function. For example, the left side of (2) and the source term on

the right side are weighted by the single point joint pdf while the integral

term is multiplied by the appropriate two-point joint pdf. The averages over

lV?,"" and o,"Vo,... are then converted to integrations with respect to
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the transform variables by means of convolution identities. The net result is

an infinite dimensional Fredholm integral equation of the first kind for the

stochastic Fourier transform of the current. This is the essence of the sto-

chastic Fourier transform technique.

Detailed Development

While the basic concept of the stochastic Fourier transform approach is

straightforward, there are a number of details associated with converting (2)

into the appropriate integral equation which require amplification. Further-

more, there is at least one intermediate result which has significant implica-

tions and should, therefore, be derived in an orderly manner. Since the con-

version of (2) requires dealing with an infinite number of stochastic variables

2 (k, 2, 3  the
( ,V1,V2r,--.) and their associated transform coordinates (kl,k2,k3 ,

algebra and symbolish is very tedious especially because of the term

N()-J)(r )]Vo g . Ignoring this term in (2) does not impact the generality of

the approach because if one understands how the term [N(r).V g]J(r) is treated

then inclusion of the neglected term can be accomplished almost by inspection.

Thus, ignoring the coupling term in (2) yields the tollowing two decoupled

scalar equations;

(r) 2q.(( x '0 1 g (r J(-)d o  (10)

q (r)J fj j x ax y 3Y 0  a~ qo0t0

where q - x or y. From a practical point of view, ignoring the coupling term

in (2) implies that the curvatures (V 2) and higher order derivatives of the

surface height, according to (4), are negligibly small; however, this simplifi-

cation will not be used in this section.

Multiplying the left side of (10) by the product of the Fourier kernel
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expfjk~e + j n4 k n Vn and the single point probability density

pi(,V1,V21,- .) , integrating over all the stochastic variables to form the

average, and converting these integrations into convolutions in the Fourier

transform domain yields

<J ()exp[Jkl+ E k Vn,]> _ 1 .r .q expj 1  n= n+ln (2) Sn f q n

. .. 1In ) dalda2 - d n

-~~ A
where rt - xx + yy , J (*) is the stochastic Fourier transform of J q(),

q q

and pl ( ) is the characteristic function for the single point joint pdf, i.e.

the stochastic Fourier transform of the joint pdf. Taking the incident mag-

netic field on the surface to have the form

A +
H (r) - H hexp(-J r-jk ) , (12)

-j.i 0 1tt iz

the term 2-.[N(r) xH (r)J may be expressed as follows;

it

Cq + (3

2A-'N('r) x I(r)] 2to [ Cq + C x +qy]ep( "t  -kiz ) (3

where + k z is the incident wave vector of magnitude k and direc-i it  iz 0

tion ki The factors Cz , C q , and C y are determined by the polarization of
i x xq y3

the incident magnetic field, i.e. q *( xh) , C = G( h)
z x

C- - q( 9 x h) , and are independent of the spatial (t and stochasticy

( ,Vl,"'.) variables. The average of the product of (13) and the Fourier

kernel is a straightforward multidimensional Fourier transform, i.e.
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<2^'[N(r) x Ho (r)I exp jjk C + j E k
n=l] $*

211 exp (- jit.t)[Cq + jCqak2x + jCqY

p 1z(k 1 k izk2,k39"--) (14)

where k = k k +k k . The derivatives with respect to k,, and k2 2x 2x 2y 2y 2

are a consequence of the slope terms C and ry , respectively, in (13).
x y

Averaging the integral term in (10) requires the general two-point prob-

ability density function p2 o'" "; - ) because multi-

0
plication by the Fourier kernel introduces the additional stochastic variables

V2 ,V3C,.. which are not contained in the kernel of the integral equation

(10). Thus, the average of the product of the Fourier kernel and the integral

term in (10) may be written as follows;

-~. f...f( ky+~i +j E
oX Yo 

n=l o

S "3-kx Cg  - y 3C +  qo(rt 0'o0o ''"of C o 0 0o

exp[jk I  + l+ k n+l J (2'' V V Co' ' ' .)dr t  dCdC dVCdV O

(15)

Assuming that the orders of integration may be arbitrarily interchanged, the

C-integration can be written as a convolution of the C-Fourier transforms of

the Green's function derivatives and p2 (.) . Noting that

rn-exp(J ) tC
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I

where F denotes the Fourier transform with respect to and 0 is the trans-

form variable, and substituting

(Ar ,to) - F Cg(A t, 0} f g(ArtC) exp (j 0 ) dC

tag(Ao t )Jg(ArtO

C(t, 0) F ac f J" exp(joa 0 C) dC

in the convolution integrations with Art = rt -r reduces (15) to the fol-
t o

0
lowing form;

2 x ax ° 0 Yo0A

1 r1

q(ton=l

i 2(kl- ooV ,Voo.. .;t) d0 dr t dC dVC dVoo'" (16)

where the tilde symbol denotes the Fourier transform of p 2 (
') with respect

to .

The 0-integrations in (16) may be expressed as convolutions with a shift-

ed argument due to the exponential factor in (16). The V CO , V2 o,... inte-
0 0

grations may be represented by convolutions with no shift in the argument.

Finally, the integrations over V ,V ,.. may be written as straightforward

Fourier transforms. Accomplishing all of these operations yields the follow-

ing result;
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< f f a(Ar t o) 0 _(Art  )< u -lr 1+ "' j to+j  gAr'

n-,o (27T) 2+Sn oax0  ak 2+ ay k 2y t )

q(r 1 2'. n-21 0oolV2 42.-n -n; t t ol1* n

(17)

where

(r )c ' .~ ~ V Coo)expfj +j n 0
to 1'2' n f f J ot0  0 0 0 1 0 n

do dVo o . 0%.do (18)

and

4 
n n 4ni,2(k 1- %Iola - 2,2...,' n,- n;e- t  - f P2( , ovV ,V ,...v ,'V0 ooAr t)

ex ~ r (O$n -0. Vn n

. dC d ° dV dV o. " "Vn dVn% (19)
0 00 0 0

The average of (10) weighted by the Fourier kernel is thus found by equating

(11) to the sum of (14) and (17). However, before doing this the substitu-

.= -P .
tion Ax = x-x and Ay-y-y or Ar t =rrt is first made in (17); then the

0
equating of terms yields
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nlim 1 ' ,Bl )l(k -l - 2 .. ,kk- n) d d,
f00 (27T) Sn JJ q t ' 2' ' n 1 1 1 2 2 n n 1 n

2H exp (- + j + j C k0 it t Xk Yak ]a1 2x~ 2' 3'

+lim a f *j'L gIBA~,) ~ a~&~$
D.+o (27r) 2+s f aAx ak2x +tMy 

3k2y ~ jto0

q J (rt-Ar 2 n 2(kl- o,o-,, 22- 2. ,k n,-n Ar )

* dArt d ° dl'.- den  (20)

-+

Since all the three terms in (20) must exhibit the same dependence upon r and

only Jq and exp(-Jkit t ) are functions of rt , (20) implies that J may be

written in the following factored form;

q(rt, lpa2,..-) = Uqv,2,'") exp (-j kit'r t)  (21)

Substituting this result in (20) and rearranging terms produces the fo!Lrwi:.g'

integral equation for Jq

1i rn ['40 0... k; - 2... ' k.d k - n
n'* (2Tr) j j
- (2) d qBB,".n d %-,2 2"",d-

q q q
=

2HL0 CZ + j C x3 2 + j C~ yak 2y]i 1 (k 1 -k iz ,k 2 ,k 3 ) (22)

where
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f2 ( 1 1 k1 ,8 2 , 2 1-9 n (21T) 2 f ax k 2x +M(Ay , k2y

+ i (Ar, o k (k 0kkk-E :&r

- 1oj o 9 l 2'. ri fn t

* exp~j )dAr dB (22a)

Equations (21) and (22) provide the equations for determining the x and y

components of the stochastic transform of the current subject to the neglect

of the coupling term in (4). The inclusion of the coupling term is not dif-

ficult and, in fact, can be done by inspection in view of its similarity to

those terms already included in (22). Thus, the complete result is as fol-

lows for q - x or y and Aq -Ax or Ay;

lim - f 1 ~~- ke 4 kal -- I i'oq(l'2""''Llll'2-2"' n-n

WON(2i) '

' 0 kk d n - s f x(Bi2' " " an)
(2T) n

r x (51,kl,9 2 2,"'" ,k,)dBd""" dn- lir 1 j
S 2 2' nofn 1 2 n - 2r an s .J Y 2  ntrs(2w)n

r ( 1 ,k 1 , 2 ,k 2 ,.. knpi - 2HOq+Jcq.a +JC]pl(kl -kik 2  
" )

(23)

where

' 1 2P- n (2)2 J J 2 '

n-; 't )exp(jk'i t" A rt )dA&rt d60  (23a)
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ry(l~. k ,.., . ) I kf t 0' )  a j  a J.]2h o3,,L .
2(n)2 3Aq ' 1 2'
(2)L y _yf

kn'-n ;Art )exp(Jki Art)dAr!t d 0  (2 3b)
t

The z-component of the stochastic transform of the current is obtained

by averaging (3) weighted by the Fourier kernel. This operation leads to the

following;

4i Ja 5l 2 -19n. j 0 91-93

(2)70 -, ' - -z n 3 2 xy as2y

S (k1-l' 2-2'""'k n-n) d de 2 "'d8n - 0 (24)

Since this result must hold for all values of kk 2 ',' it follows that

J~i 
followsa that

J aL + a*2y (25)

1'2 2x 36____2y _

Discussion

One of the first results of the stochastic transform approach is illus-

trated in (21); that is, the dependence of the transformed current upon the

transverse coordinates x and y is identical to that of the incident plane wave.

An important implication of this result is that the average scattered field

(obtained by substituting (21) in (8) and this result in the average of (5))

is always specular. That is, the average scattered field is non-zero only for

ksx - k ix and ksy - kiy. It should be noted that the specular nature of the

average scattered field is a general and an exact result for homogeneous sur-

face statistics. However, if the surface has nonhomogeneous statistics then

<E > will not, in general, be specular because the joint two-point probability

density function will no longer depend only on the difference coordinates Irt'

2-16
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The specular nature of the average scattered field was previously demonstrated

by DeSanto [5) using the diagrammatic approach.

It is interesting to compare (22)*with the results obtained from the dia-

grammatic technique [6]. In the case of the latter approach one obtains an

infinite hierarchy of one-dimensional singular integral equations of the second

kind. In order to obtain the integral equations in the hierarchy, one must be

relatively familiar with the use of diagram techniques to form the appropriate

"mass operator" which is related to both the source term and the kernel in the

resulting integral equations. Furthermore, since at a given level of the hier-

archy, the resulting integral equaton depends in part on the solution of the

next lower level integral equation, the approach has practical numerical limi-

tations. Finally, it is somewhat difficult to see how certain statistical fea-

tures of the surface impact the hierarchy of equations. By contrast, (22) is a

single integral equation of the first kind involving an infinite number of vari-

ables. Because of the infinite range of integration, the integral equation is

of the singular type with respect to all variables [10, pg. 160). Thus, the

fact that (22) is an integral equation of the first kind should not cause too

great a problem. Obviously, (22) cannot be solved numerically for much beyond

three variables (klVk2) unless the kernel has a very special behavior with

respect to the higher dimensions. Based upon these points of comparison, (22)

exhibits no clear advantages with respect to the diagrammatic approach except

that it is more compact.

There is, however, one aspect of (22) which is extremely useful and does

not appear to be obviously present in the diagrammatic technique. The impor-

tance of all the higher order surface height derivatives is explicitly contained

*The remainder of this section will deal with the scalar formulation for jq
because of its more compact form. The concepts and developments apply equally
well to the vector equation (23) however.
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in the two-point joint characteristic function p2
( .) in (22a). It is therefore

a reasonably straightforward task to determine the conditions under which a

certain surface height derivative is no longer important in the determination

of the stochastic Fourier transform of the current. The logic for accomplish-

ing this task is as follows. Assume, for example, that one would like to know

when the curvature, V , and all higher order derivatives have no significant

impact on the current. If they are not important then JqCrt,,e,...)will be essen-
q t S -3

tially independent of V 2,V C," so that j (l,23' )= j (

q12'3' q 2 n 36( n
because the transform of a constant is a delta distribution. Substituting this

result in (22) yields;

1(2 TO f-f q(lI,2) Pl (k-1  ,i 2 - 2 ,i 3 , '' n) P I

... p) / (kl-ll ,k2 2 ,k3  -kn dOld 2

= 2H oCq + j Cxak2x + j Cy ak2y ] P1 (kl-kik2' k 3 '...) (26)

In order to make things explicit, let the stochastic variables V2,V3,... be

statistically independent of and V . Then the single-point characteristic

function may be factored as follows;

Pl (k1-01'k 2-a2'k3"'-) "P(kl-l'k 2-a2)Pl (k 3'k4

where p1 (*) is the single-point characteristic function for the indicated vari-

ables. Substituting this identity in (26) and dividing by P 1(k3 ,k4 ,...) yields

1 
4. • "1  BI,. 2)tP(k-8lk

2 " 2 ) 1 ((21r)
3  f f ql'22

+

r r2 (alsk l. a2. ." k" 2 k3' .O.k ,,lCk -1' k 2-_;2) 1 k 3,% k,4" •.. )  dB 1 42

- 2H[C' + j a + j C 1 P(kl-kiz ,k2 (27)

2y k 2y]
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The right side of (27) is independent of k3,k4,... whereas the left side still

depends on the variables through the r2/I term. Since this is an impossible

situation, one examines the Ir2 / term to determine the conditions for which

it is essentially (but not trivially) independent of k 3 ,4,.. Thus, the

stochastic Fourier transform technique provides a very orderly procedure for

estimating the importance of the surface height derivatives. This result ap-

pears to be one of the most important advantages of this technique.

Limiting Cases

In the previous section the stochastic Fourier transform approach has been

introduced, developed, and one of its merits hasbeen discussed. However, the

real power implicit in the technique results from its ability to provide exact

results for two very important limiting cases. In order to be specific, the

randomly rough surface is assumed to be a jointly Gaussian process; [11] pro-

vides details on the form of Pl and 2 for a Gaussian process. Such an assump-

tion is not essential to the following development but it does facilitate com-

parison with previous results. Furthermore, it will be assumed that the sto-

chastic surface height has a well defined spatial correlation function

)i )(r +Ar )> which decays with increasing Ar such that the

concept of a correlation length (Z) has meaning.

Gently Undulating Surface (. >>!

The first limiting case to be considered is that of a surface of arbitrary

height but so gently undulating that none of the surface height derivatives

(Vn",n-l,2, - ) are important to the determination of the current. For such

a surface, the correlation length is necessarily much larger than the electro-

magnetic wavelength (Z >> X0).

Using the technique developed in the previous section it is possible to

determine the conditions under which the height derivatives are not important.

To shorten matters somewhat, the technique will be demonstrated by considering
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only surface slopes. That is, <(vn,) 2> for n-2,3,-'' are assumed tube van ishingly

small so that the single and two-point joint probability density functions ap-

proach centered delta distributions with respect to these variables. Conse-

quently, the Aoint characteristic functions Pl and P 2 in (23) become indepen-

dent of k for n=2,3,- and the transform of the current may be written

as follows;

j(~~~~~ . )j * s-3 (28Jq('2 0 3'"" 2 9= Jq(l ) (2 7)s°- IT - 6 ('6) (28)

q ' '3' q I'2)( i=3 6(f
This result is merely a restatement of the fact that the current, under these

2
conditions, is independent of the surface curvatures (V C), rate of change of

curvatures (V3 ), etc. To determine when the slopes ( may be ignored, l is

factored out of r2, r x , and ry in (23), jq( 1 , 2 ) is assumed to be of the fol-

lowing form

Jq(Ul, 2 ) - jq(a1)6(A2 )(211)2 (29)

and the residual dependence of r2/51 , x , and FP upon k2 is examined

after dividing both sides of (23) by P1 (k2). These operations lead to the fol-

lowing simplified form for (23);

1 0 f1)y((kl-)) - (klk1)5 (k fl(kl)U (k

0r (8'kls2)/ (kl-8, )d 0 ki( (k )r (9k ,k )d
Xl 12 111 21 2 r y 111y l' 2 l2lJ<C q_. r 2>kC ~j 2)/ kkl

= 2H [Cz- q 2 >k Cq-< (30)
z x 2x x y 2

where

~- 2 tt i4~ >k (a-,)x + ->' a)
P1 aAx x 2x+ j aAy 2

x exp(ji" Ar )dArtdO (30a)
-t t0
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r
j 2

(2Tr) 2  aAqt 0

~ff (30b)

(2r)2  JAq >+R]k2 + (20 o-l-k1)Ry-Rxyk2  Xexp\j Jk" )dAr do

(30c)

and

X = exp - [< 2> -Rj(o -a) (-kl) + (0o-l )(k R +k R (30d)

0 01 o 1 2x x 2y y

In the above expressions < 2> and < 2> are the variances of the slopes in thex y

x and y directions while R =DR/DAx , Ry=aR/3Ay , etc.
x

Consistent with the assumption in (29), jq( ) is to be determined from

(30) and the resulting solution must be independent of the slope statistics

and k2' For arbitrary slope variances this is not possible and it is necessary

to examine the conditions under which the slope dependent terms in (30) can be

made small. The terms on the right hand side of (30) which depend linearly

+2 2
upon k can be made small by taking <t > << and <Cy2><< 1. If the slope

variances are small, the correlation function may be approximated as follows;
R(_) <2> _ 2I < 2> (AX)2 _ I < 2 >(Ay)2 (1

R(Ar d) <,2 2 2x< .f. (31)

because <(V n) 2> for n-2,3,.., have already been assumed to be vanishingly

small. Also, the coordinate system has been oriented such that there are no

Ax'Ay terms in (31). In view of (31), the terms in (30b) and (30c) which de-

pend linearly on k2x and k2y, respectively, vanish. The exponential in (30d),

using (31), may be written as follows;

Xm exp - 2[< 2> (Ax)2 + <2> (Ay) 2 ](B0 -$ 1 ) (%-k,)

" (-1)n(, -)n[ < 2>k AX+<y 2 >k2 Ay]n

0 Y I x n xy y! (32)
nwo

The terms in (30a)-(30c) which have R or R multiplying the Green's function
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derivatives may be lumped with the series expansion in (32). The Ar t-integration

in (30a)-(30c) may now be treated as a convolution of the Ar -Fourier transformt

of (32) with the transform of the Green's function derivatives. The transform

of the Gaussian factor in (32) is

2~k 2( k.)j - 2]

smalos 1p (3a exp( I i - - ,'y (32a)

For small slope variances (32a) behaves as a delta distribution which combs the

transform of the Green's function derivatives out of convolution. The terms

in the power series in (32) give rise to n-h derivatives of the delta distribu-

tion which, in turn, yields derivatives of the transform of the Green's func-

tions. However, because of the slope variances in the power series in (32),

the ntO_ derivative of the transform of the Green's functions will be multiplied

by a slope variance raised to the nth power which is vanishingly small. Thus,

the only term left in (30a)-(30d) is

251 (27r) 2 __g expj (Jit*Ar t dAr td' 0

However since the Ar t-Fourier transform of g is an odd ftukction of 0 F2/P

is identically zero and (30) becomes

1- q(a l) l(k-61)dg1 z 2C q l(kl-ki (33)

so that j (Bl) 2H C q 6( -kiz)(270 or

W =z2H q exp(-jki r) (34)

which is the scalar single scattering physical optics result. With kI =k =-k.,

(33) shows that the average field scattered by the surface is attenuated from

its flat plane value by the factor pl(-2kiz) exp(-2k2< 2 >cos 2). This is
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the classical result which simply says that if the surface is sufficiently

smooth, the average sLattered field appears to be due to a randomly elevated

plane. !he important point to note from this development is that for a very

gently undulating surface which has a correlation length which is large com-

pared to 0 , scalar single scattering or physical optics is applicable.O

Uniformly Rough Surface (. < a

A much more interesting limiting case is provided by surfaces which have

arbitrary height but a correlation length which is small compared to X . Such0

surfaces necessarily have a great deal of their height variance contributed by

undulation frequencies the order of and greater than k , the electromagnetic0

wavenumber. Consequently, there is absolutely no reason to expect physical

optics to be an adequate approximation for the scattering process and, indeed,

this is found to be the case.

Before proceeding, it is worthwhile pointing out why it is the ratio of

the correlation length to X that is a critical parameter. Departures from0

single scattering are caused by the r2, rx, and ry terms in (23). These terms,

as illustrated in (22a), (23a), and (23b), are determined by an integration over

Ar . The quantities which appear in the Art-integrands are dependent upon Xo

and the correlation length as scale parameters. Thus, these parameters dc.ter-

mine whether it is the electromagnetic functions or the statistical functions

which dominate the Ar t-integration.

When the correlation length is much smaller than X , the statistical func-
0

tions in (23) vary much more rapidly with Ar t than the electromagnetic functions.

In fact, the statistical functions go from completely correlated to completely

@lt is difficult to describe a surface having I << X0 with a few short words.
"Uniformly rough" is appro riate when the correlation function is a Gaussian
function of the form exp(- Ajt 2 /t 2 ). In this case the surface height spectrum
is also Gaussian and if Z << Xo then the roughness is spread nearly uniformly
throughout all spatial frequencies < k° 0 2/X o .
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decorrelated over a region of essentially zero measure when compared to the

scale of variation of the electromagnetic functions. Consequently, the statis-

tical functions in (23) may be replaced by their values for complete decorre-

lation, i.e. jArtI - -, with no appreciable error. This implies that the cor-

relation function and all of its higher order derivatives are set to zero in

(22a), (23a), and(23b). Using this approximation and the fact that decorrela-

tion implies statistical inde;endence fcr a Gaussian process, 2 in the expres-

sions for r2 9 rx, and r simplifies to the following form [11];Y

P 2 (kl- % - k2 - a '  n ' - n ) = exp <2>Uo l (-k I ) ]  1 (kl_ -l)

n
• l(kiP(-i

i=2

where l(k i) and are the characteristic functions for Vi . Substituting

these simplifications in (23) and noting that
n ~++

1 (kl-l ,k 2 -4 2 ,..,k -n) = 1 (kl- l) T Pl(ki-ki)  I

i=2

it is found that j q C 1 , 2  , ) has the following dependence upon i=3,4,.

s -3 n
(',2,..., n) = j q( l, 2 )(2n) n 7 ( (35)

jq( lf 2 i=3I )(5

n

Using this in (23) and dividing out the common dependence upon 4[ pl(ki) results
i=2

in the following two coupled equations for the current components;

(21T1" 3 f (k1 _01)l x2 ) ( - 2 ) exp [<x >k2x 2x + < Y >k2y 2y

) f[J<C2>~ -2
-Jx(01,02) f J<;> 2xgix- j < y2>k 2y gy + g-9 Xd0 0

2H - J<C2 >k C Pl(k.-kiz) (36a)
y2 j2li
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(270 3 f f 1 1)P1 ( 62 ) (i y ( 1 '82  exp + > 2x8 2x >k2 y B2y]

jy(6 A) I- *< 2 >k k + j P. , +2 d

x 22x2 ]

-Jx(i1 2 )f [J 2 >(k 2x gy] X d1o) dtId32 = 2H[ : >k 2 CV] (k-k.

(3bb)

where the triple tilde symbol over the Green's function derivatives denotes the

three-dimensional Fourier transform with respect to Lx, Ay, and A,. The fLuc-

tion X is given by

X = (2T) - 2 exp I - < 2>( 0o-8)( o-k IM

Expanding the exponential factor containing k2x and k2y in a series and equating

like powers of k2x and k2y on both sides of (36), it becomes clear that

iq(alVA2) may be expressed as follows;

i 81 $ { + (2)(a1)c(2x)6 ( W 2)}(211)2

(37)

.i S1 9 2)= {( 1 )( 8)6 () 2y) + j( 2 )(8 1 )6,(2x)60(8 2 y )(2 T)2

Substituting these results in (36) and equating like coefficients of k2. and

k 2 y yields the following four equations for the al-dependent parts of tho trans-

formed current;

f-- q(,l)P(k8) (2-)2 g exp0-<rk2 >(8 k)] d 1=2H C  (kl-k
q(27 Tr J 0 o 1] oj d=2 0C z 1 1 iz

(38)

"f Pl(kl,-$l) (J2) (1) + j2 f()(l ) f q exp [-<C2> (o ) (o-k,)] d °

q --[( 2 2i qkq0

(2702 Z, ljq [- 0-81 )(0 -k)] d6 d2i j2H1 C~ q I(k -k ) (39)(270 2 q, 100q

2-25



where q and q' are paired as q=x, q' =y and q=y,q' =x. Using (37) in (21),

(5), and (8) shows that the part of the current which depends upon 6' (2q) con-

tributes nothing to the average scattered field which from (5) may be expressed

as follows;

<E s(k s)> jirk0q g(R )6(k -k. )[k s xk 4 (k (40)
SkSZ o g R)(S t  1 S" s q s

where for q -x or y,

T (kz) f 1(k)P (k -k )dk (41)
q sz JT f q''l sz 1 1 (1

and k sz=-kiz because of the specularity of the average scattered field. Sub-

stituting (41) in (38), combining Pl(k -Bl)with the exponential term [il1, and

noting that

--o 2 -k.2 +jE
z 0zC-0 0 k iz+ C

yields the following integral equation for T q(k)

T (k) = 2H [q-(I xh)jPl(k-kiz) + - lim 0 (k- 0 )Tq (Bo)d 0  (42)
q 0 1 OL ko iz+

Both (42) and some of the interim results leading to it have significant

implications. Eqns. (35) and (37) imply that the product of the surface cur-
l2

rent and / + 2 may be divided into two parts with one part totally inde-
x 31

pendent of tne surface height derivatives, Vn . It is tempting to declare

that the other part depends linearly on one of the slope components since this

woula appear to follow from the 6'( )q ) in (37) and the Fourier transform rela-

tionship between Jq and j q, see (11) and (21). However, it is not clear that

such a Fourier inversion uniquely recovers the true stochastic nature of the

current, i.e. the true dependence on rt . This simply says that one cannot,

in general, go from j back to J " q
qs

Using (38) and (39) and the fact that C x= _ C Y
, it can be shown that

y xf (2) 0$1) 1(kl-al)d$1 -= () (k -3)d 3 (43)
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and that x2(2)i) can be determined from knowledge of T (k) according to the

following;

1 (2) 1 Yk

2- J (Q1 ) 1 k1 - )d = - j 2HoC xt(kl-kiz) + -kiy k

zlim l(kl-'o)Tx(£o)d'o (44)

E• * lia 2 -k 2 +jF_
1 0 iz

x .(2)

for C # 0. It is important to realize however that j contributes nothing
z q (2)

to the average scattered field. Discussion of the effect of j2) on the mean

square scattered field will be left to future investigations.

Equation (42) is very similar to the integral equation obtained by DeSanto

[6] for this "uniformly rough" surface limit. It differs in that DeSanto ob-

tains a o in the denominator of the kernel of the integral term rather than
0

in the numerator as in (42). However, DeSanto's integral equation results from

only the first term in his diagrammatic hierarchy of equations whereas (42) is

exact. It is therefore not surprising that the two integral equations differ.

At the beginning of this section, it was stated that the gently undulating

and uniformly rough surfaces are very important limiting cases. Although it is

difficult to prove mathematically, there are strong physical agruments to suggest

that these two cases provide lower and upper bounds on the average scattered

field. That is, for a fixed height variance, <C2 >, the gently undulating sur-

face gives a lower bound on the coherent field while the uniformly rough surface

yields the upper bound. As noted previously, the gently undulating surface be-

haves as a randomly elevafed plane which, in turn, puts all of the randomness

of the surface in the phase of the scattered field. Upon averaging over an en-

semble of scattered fields, the randomness of the phase leads to a maximum

effect on the mean scattereO field and, consequently, a minimum value. As the

surface approaches the uniformly rough case, the randomness of the surface no

longer appears totally in the phase of the scattered field due to multiple

scattering on the surface. This is just a restatement of the fact that the phy-

sical optics approximation is not accurate for surface features having an undu-

lation frequency which is small compared to k0 . Thus, once the correlation
2-27



length of the surface exceeds the electromagnetic wavelength, the effects of

the random height on the phase of the scattered field are minimized. Conse-

quently, this should lead to a maximum coherent scattered field.

One final interesting facet of these two limiting cases is the points which

they share in common. Both cases depend oy on the 3g/ao term in the integral

in (10). For the gently undulating surface the contribution from this term is

essentially zero. For the uniformly rough surface this term encompasses all

of the multiple scattering that is important to the coherent or average scattered

field. A second point of commonality is the fact that the currents which con-

tribute to the average scattered fieldare independent of all the surface height

derivatives. These facts form the basis for an approximate approach to solving

(42) which is detailed elsewhere [12].

For the gently undulating surface, this is the total current while for the

uniformly rough surface it is only a portion of the current which contributes

to <t >I
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Randomly Rough Conducting Surfaces
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Abstract

An approximate solution for the average field scattered by a perfectly

conducting randomly rough surface having a correlation length much smaller than

the electromagnetic wavelength is presented. The analysis is based on the use

of a substitute surface which gives rise to the same describing equations as

the true surface relative to the average scattered field. The substitute sur-

face comprises large, non-overlapping, flat areas having random elevations

with respect to the mean planar surface and arbitrary correlation between

adjacent areas. The average scattered field is shown to depend upon the number

of interacting areas and the surface roughness. For a given range of surface

roughness there is a specific number of interacting areas which dominate the

average scattered field. It is demonstrated how this number can be computed

and how a continuous curve of average scattered field as a function of surface

roughness is obtained. Of particular importance is the quantitative correspon-

dence established in this paper between the surface roughness and the degree

of multiple interaction on the rough surface.

Introduction and Summary

Single scattering approximations have served very nicely to illustrate

some of the salient features of scattering from randomly rough surfaces [1].

There is, however, a lingering controversy as to how far these approximations

can be extended [2]. The basic problem associated with establishing the range
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of validity of these approximations is that the next order correction is very

difficult to obtain. A number of solutions have been presented which are for-

mally exact but are practically limited to a two-term perturbation approxima-

tion [3,41. The pioneering work of Zipfel and DeSanto 151 provided the first

approximate correction to single scattering theory which did not require a

small perturbation in the surface height. Subsequent numerical work by DeSanto

and Shisha [6) showed that, for a Gaussian distributed surface, single scat-

tering grossly underestimated the strength of the average scattered field for

large surface roughness and small correlation length. Unfortunately, the

detailed mathematics essential to obtaining this correction to the single

scattering approximation did not lend itself to a straightforward physical

interpretation [7].

Recently another approach to the rough surface scattering problem has

been developed [8]. Apart from starting with the magnetic field integral

equation, the unique feature of this approach was the conversion of averages

to convolutions in stochastic transform space. The purpose of this new approach

was not to duplicate the excellent work of Zipfel and DeSanto but rather to

obtain a solution which clearly illustrated the range of validity of approxi-

mations necessary to simplify the full-blown problem. One of the results of

this effort was the derivation of an exact compact integral equation for the

average scattered field in the case of a surface having a correlation length

much smaller than the electromagnetic wavelength. This equation was similar

to the approximate integral equation obtained by Zipfel and DeSa||to (5]. In

[8] it was shown that the average field scattered from a randomly rough per-

fectly conducting surface was attenuated from its flat surface value by the

quantity T(k -ksz -kiz ) where ksz is the z-component of the vector wave-

number in the scatter direction and kiz is the z-component of the vector
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wavenumber in the incidence direction. The condition k - k results from thesz - iz

specularity of the average scattered field. For Gaussian surfaces having a corre-

lation length (k) much smaller than the electromagnetic wavelength (A ), the

exact equatiun for T (k) was found to be the following;~q

Tq(k) = 2H [ x (xh)] (k-k ) + llm [ 0 1 (k-o) Tq (%o) d °  (1)q z IT 2_ t*L 2..kj qf C-0o -k +j E ]

where H and h are, respectively, the amplitude and polarization of the mag-
0

netic field incident upon the surface. In (1) q is either x or y and Pl is the

Fourier transform of the surface height probability density function.

A slightly different form of this equation (with a° in the denominator

of the bracketed term rather than in the numerator) was solved numerically by

DeSanto and Shisha [6] and it would appear to be a straightforward task to

apply their technique to (1). However, this writer has some concerns about

using the same technique to numerically solve (1). First, although the dif-

ference between (1) and the equation solved in [6] may appear to be minor, it

is likely that the difference may significantly alter the convergence properties

of the integral in (1). This, in turn, leads to the distinct possibility of

singularities in T q(k) for k# -kiz which could not be accounted for using the

quadratic spline technique employed in [6]. In short, the numerical solution

of (1) may require a great deal more in-depth analysis than presented in [61.

Finally, there is a very practical limitation contained in a numerical

solution of (1). Assuming that a suitable technique can be devised for solving

(1) numerically, what one ends up with are numbers! While these numbers are

certainly important, they add nothing to our understanding of the complex

process of multiple scattering. If real progress is to be made in moving

beyond our present knowledge, it must come from a clear understanding of the

physics of the problem and not just numbers. Consequently, considering the
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potential difficulties associated with a numerical solution of (1) along with

the limited iiisight available from such results, there is a definite need for

an alternate solution of this problem. The purpose of this paper is to present

one such alternate approximate solution.

The cornerstone of the new solution is the previously derived [8] similar-

ity between the stochastic Fourier transform of the total current induced on

a gently undulating surface (9>>Xo) and the part of the stochastic Fourier

transform of the current induced on a uniformly rough surface ( <<X 0 ) which0

is responsible for the coberent scattered field. That is, both of the trans-

formed quantities have the same dependence on all surface height derivative

statistics and they satisfy exactly the same reduced form of the transformed

magnetic field integral equation. This similarity suggests that if the gently

undulating surface (Z >> 0o) could be altered so that, from a mathematical point

of view, the case of Z << Xo could be addressed then this altered surface could

be substituted for the uniformly rough surfaces. Furthermore, if this substi-

tute surface is such that its scattering properties with respect to the aver-

age field could be determined then these results would apply also to the uni-

formly rough surface. The key to success in such an approach is assuring that

the substitute problem can be solved more easily than the original problem

and that the results are in complete agreement with the physics of the problem.

The transformation of the gently undulating surface ( -> X 0 ) into a sub-0

stitute surface for the uniformly rough surface (Z<<A0) proceeds as follows.0

Because of the smallness of the surface slopes, curvatures, etc., the gently

undulating surface may be approximated by an infinite number of large

0 t is assumed that the original similarity between the transformed currents
is invariant under the alteration process.
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non-overlapping conducting areas which are flat (non-inclined) but randomly

elevated with respect to the z -0 plane. The current induced on any one flat

area is, however, determined by only a finite (but unknown) number of neigh-

boring flat areas. An exact determination of the current on the rough surface,

in this approximation, is possible and it is found to depend upon the relative

elevations of the non-overlapping areas in a rather simple and physically

meaningful manner. The complex amplitude of the average scattered field is

obtained by averaging the product of the random height dependent part of the

current and the Fourier kernel exp(j k rz) where k is the z-component of the

wavenumber vector in the scattering direction and C is the random surface height.

In order to accomplish the field averaging one must have knowledge of the

joint probability density function for the heights of the electromagnetically

important neighboring areas. This, in turn, raises the question of the degree

of correlation between these areas. Thus, it is at this point that total

decorrelation may be inserted to complete the similitude between the substitute

surface and uniformly rough surface, i.e. since Z << X the uniformly rough sur-
0

face may be approximately characterized by 2 = 0 or complete decorrelation.

The substitute surface therefore comprises an infinite number of large non-

overlapping conducting areas which are flat but randomly elevated and uncor-

related with each other.

In the case of surfaces for which decorrelation implies statistical inde-

pendence (such as a Gaussian) the final result reduces to one integration which

can be accomplished numerically. Not surprisingly, the average scattered field

is found to depend upon the number of areas or regions on the rough surface

allowed to interact with the point in question. For a fixed number of inter-

acting areas, there is a specific range of roughness or Rayleigh parameter

for which the average scattered field is a maximum. As the roughness decreases
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toward zero, the number of interacting areas on the surface which maximize

the scattered field also approaches zero. Conversely, as the roughness in-

creases the number of interacting areas necessary to maximize the average

scattered field increases. In terms of the physics of the scattering process,

these results have a very clear meaning. In essence the solution comprises

a discrete approximation to the fact that, as the surface roughness increases,

the current at any point on the surface is dependent upon an increasing area

of the surrounding surface due to multiple interaction and not just the behavior

of the surface in the immediate vicinity of the point in question. This result

represents progress in the understanding of scattering from rough sur-

faces in that it is the first time that the complicated mathematics of mutual

interaction have been simplified to the point where the result can be put into

one-to-one correspondence with the physics of the process.

Numerical results for the strength of the average or coherent scattered

field are presented for the case of a Gaussian distributed surface. These

results show a significantly stronger coherent power for large surface rough-

ness or Rayleigh parameter than is predicted by single scatter or the physical

optics approximation. The apparent reason for the failure of the single scat-

ter approximation is as follows. The single scatter or physical optics approxi-

mation attributes the effect of the surface roughness to a phase modification

which, when averaged, tends to maximize the effect of the roughness. For

<< X ' the solution obtained in this paper shows that mutual interaction

gives rise to the same phase modification as obtained with single scatter plus

an additional amplitude effect. However, this amplitude effect deemphasizes

che influence of the surface roughness as predicted by the phase only approxi-

mation. This result also provides some insight into why iterative or "back and

forth" multiple scattering attempts to solve the problem are successful only

if the iterative series can at least be partially summed. That is, such attempts
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lead to series terms which contain, primarily, a phase perturbation; thus, no

single term or any finite sum of terms can possibly describe the important

amplitudes effects found in this paper.

A comparison with the results obtained by DeSanto and Shisha [6] is also

presented. While there is agreement in predicting a greater average scattered

field than single scattering for large surface roughness, there is also a dif-

ference in the detailed behavior. This is not surprising given that the

DeSanto and Shisha result stems from only the first integral equation in an

infinite hierarchy of integral equations.

Determination of the Surface Current

The rough surface provides the boundary between free-space and a perfectly

conducting medium and it is assumed to be infinite in extent in the x and y

coordinates of a conventional (x,y,z) coordinate system. The random surface

height C(x,y) measured from the z - 0 plane is assumed to comprise a zero

mean statistically homogeneous process with the mean surface equal to the z = 0

plane. The magnetic field integral equation [10, pg. 354] for the current

J (r) induced on the surface at a point r = xx + y9 + Cz due to an incident

magnetic field of the form H(r) = Hh exp(-Jki r) may be expressed in the

following form [8];

J~r)= 2Tr7, (r +~~N r gJ r N r Nr)J r )V dr~ (2)

where J(r) is related to s () by

() + (ar/ax) 2 + J s(r)
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and N() x - + 2 . The incident wavenumber vector

kI  k kxX + ki y + kiz is given by
i ix i

ki = -k [sin0 coso i + sin0sino + cos02)

where 0 is the angle of incidence with respect to the normal to the mean sur-
face, is the azimuth angle measured from the x-axis, and k = 27r/A is

O 0

the free-space wavenumber. The quantities Wa/x and 3C/ay are

the x and y components of the surface slopes at the point r on the surface,

r = xr x + y , and g(jr - ro) is proportional to the free-space Green's
0

function, i.e.

exp(- j ko I ro1)
g([r- rot) = 0 0 (3)

Ir- 1i

Using the fact that the current must be orthogonal to the surface normal, i.e.

N(r 0) J*r.) - 0 , leads to the following relationship between the vector com-

ponents of the current;

Jz(r 0) =(a o/ax) Jx (r) + (o/ay o) J y(r ) (4)

Using (4), it can be shown that the term [N(r) oJ(0 )] in (2) is proportional
-~ -4

to the difference between the surface slopes at the points r and r on0

the surface. This term contributes nothing to that part of the current respon-

sible for the coherent scattered field for either £ >> A or k << A 181 and
0 0

so (2) reduces to three scalar equations or, alternately, (4) and the following

two expressions;

J (r) - 2q.[N(r) x H (r)] dg + J (r )dr (5)
q O f I a ay 0 q 0 t
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where q - x or y and q is a unit vector in either of these directions.

The slope dependent terms in (5) also can be shown to contribute nothing for

either case [81 and (5) becomes

J (r) =J (r) + J1 jr ) qo to (6)

for q - x or y and J (r) = 2o[ x H (r)]q

The argument of the Green's function in (6) is t t I2 + ( 2

Starting with the gently undulating surface (k>>A0 ) and using the fact that
o

the surface curvatures and slopes are very small implies that the quantity

(t-ro) is nearly a constant over a large range of rt . Thus, (6) may be
0 t

approximated as follows;
M -r.

J (r) ZJi (r) 7:E( - n J J~ n~ ) dr (7)
q q nffi An (- n t

nn

where A n  is the area of the z - 0 plane over which C - C n is nearly con-

stant and M+l is the number of these areas which make up the entire z = 0

plane. To include the entire z - 0 plane in the integration in (7), M should

be infinite; however this ignores the fact that only a finite area about the

point (r,0) is effective in determining Jq(rt, ) . Consequently, M will be

replaced by N which is assumed to be finite.

In essence (7) is a discrete approximation to (6); retention of the inte-

gration in (7) merely reflects the fact that ( -C n)  is constant to some

prescribed tolerance over an area A and not just a point. Definir.- Sn(r )n n t
n

to be the support function for the nth area, i.e. S n=- I for r C A andnl t n
n

zero otherwise, (7) may be rewritten as follows;

CO 4. 4.

N ag(rt-rtnC - Cn

(r) X J (r) - T -J an J (rn) S (rt) dt (8)
n-q7rI f q n n t t
n- _ 4~n)  qn n

3-9



where C - n is assumed to be constant or independent of rt  Figure 1
n

illustrates what has been done to the surface in going from (6) to (7). In

essence the continuous surface has been approximated by a non-overlapping col-

lection of discrete flat areas which are all parallel to the z = 0 plane.

The derivative of the Green's function may be expressed in terms of a

two dimensional inverse Fourier transform [5];

ag(A t  A n )n 1 4 sgn(A n)eXp[-j -kx1 JACJ -jkA..Art dk (9)

cn  2(2T)2 f n 0 t nj

where A n  C - n ,Art = rt - rt  and the signum function is defined as
n n

follows;

I ACn > 0

sgn(An) 0 AC = 0

-i AC < 0

It is known that the average scattered field is specular [9,8] . This

means that after averaging j qr) over the stochastic height C , the re-

4
sulting dependence of the averaged current on r is of the form

4 + 4.
exp(- iki "r=) where k k + k 9 is the transverse part of the inci-exp- ki rt wer ki t ix iyt t

dent wavenumber vector. In general, one cannot infer this particular func-

tional dependence before averaging because C is a stochastic variable, i.e.

(r ) . However, in the case of (8) where C and Z ,n],2,...,N , are

taken to be independent of rt (because (8) represents a discrete approxima-

tion to the continuous surface) the following form is correct;

Jq W -j (4) exp (- j k i rd (10)
t

Substituting (9) and (10) in (8) and performing the integration over rt

n
yields the following result;
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N

j(C)exp (-Jkit') = Jq o exp(-J i - -Jk ) - j J(r n)sgn(At' )

n=l

f - 2 - 2i -4,
n-ki t , e p - k -Ik± 2  

- j k r + j(k - 3)r dk.

(11)

where J = 2H 0- zxh) , S(*) is the Fourier transform of the nth support,

and rtn ° is the vector distance from the origin to the centroid of the nth

flat area projected on the z =0 plane. The curvatures and slopes of the continu-

ous surface are taken to be so small that each of the discrete flat areas

A ,n=l,2,...,N, have linear dimensions which are large in terms of a wave-

length. Thus, the Fourier transforms of the support functions (S n) will be
-+ -,+

,,ery peaked about k.=k iand they are approximated by delta functions. Accom-
t

plishing the k±-integration and dropping the common exp(-j ki r dependence

yields

N

jQzi exp(-jkl) - j( n )sgn(& n ) exp (-j kz JAC) (12)
qo iz n n n

n=l

which is the equation that must be solved to find the current.

Before continuing on with the solution of (12), it is wise to review the

essential rationale which permitted the simplification of (6) to (12). The

first step entails the observation that the current at the point (x,y,r) may

be effectively determined by its interaction with the current at an unspecified

number of other points (xn'y,n), n=1, 2 ,...,N, on the surface. In view of the

very slowly undulating nature of the assumed surface, these N interacting points

are approximated by large flat areas (see Figure 1). The elevations of these

areas, namely 4 and n,n-l,2,'--,N, arerandom but independent of the transverse

spatial coordinates rt and rt  . As a result of this and the specular nature
n

of the average scattered field, the dependence of the current upon the transverse
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coordinates r t may be inferred directly as in (10). Finally, the height depen-

dent part of the current is found to be a solution of (12). In essence, (12)

relates the current on the area at an elevation 4 to the currents on the areas

at elevations n,n=1,2,..,N.

As a first step toward solving (12) it should be noted that if there are

no additional areas of interaction, i.e. N =O, or if tne other areas are at the

same elevation as the area at 4, then

j(C) =Jq exp(- j k ) (13)

which is the correct result for a single randomly elevated plane. Of particu-

lar significance here is the fact that (13) is independent of exactly how the

limit of a single plane is achieved. That is, the proper limit is obtained

either by allowing no additional areas (N =0) or by forcing all of the intler-

acting areas to coalesce into one plane ( - ,n=1,2,'-,N) . Equation (13) is

also recognized to be the physical optics or single scatter approximation for

the height dependent part of the current.

The most straightforward approach to solving (12) is to start with one

additional area (N=1) and then build on this result. For N=, (12) becomes

ij( ) = J exp(-j k. k) -gn e) (14)qo iz

which relates the current on the area at z = to the current induced by the

incident field and the cirrent on the area at z= 1  Rewriting (14) for tlw

two regions - > 0 and <- K 0 yields

J(4) = J exp(-j k iz) - i(Cl) exp (-j kiz [-i 1]) - >0 (14a)

and

iJ(() J exp(-j k. 4 1(i) exp (j ki [,-rl]) , <0 (14b)

By inspection of .-se two equations, the following solution is obtained;
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i( ) = Jqo exp(- j ki C)U(-AI) (15)

where A = _-l and U(-) is a unit step function defined as follows

0 A > 0

U(- ACI) = 1 (16)

(the fact that U(- AC1 )= 1 for Ar1 =0 follows from the appearance of the

signum function in (14) and its definition at A 1 =0). In verifying that

(15) does indeed satisfy (14), one must be careful to reverse the roles of C

and C1 when substituting for J(1I) , i.e.

i

(o iqo exp(- j k i) U (ACI )

Having found the solution of (12) for N= 1, it is a straightforward task

to verify that adding more interacting areas simply results in multiplying (15)

by more unit step functions. That is, the solution of (12) is as follows;

i N
J() = Jq exp(-j kiz ) -TT U(c n - ) (17)

n-1

This is an interesting and not altogether unexpected result. According to

(17) only the lowest elevated area will support a nonzero current. For

example, if the C-boundary is the lowest then A n > 0 for n=1,2.... ,N and
n

J( ) is just the current due to the incident field. Conversely, if is

the lowest then j( ) will equal the current due to the incident field and

all of the other boundaries will support zero current. If there is no current

on a boundary then the boundary produces no scattered field and so, for all

intents and purposes, the boundary does not exist. Thus, (17) predicts that

for any realization of the random boundaries, only one (the lowest) deter-

mines the scattering from the surface. This result is entirely reasonable
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because in discretizing the original integral equation, i.e. (6), the problem

was recast into N +1 interactirg perfectly-conducting large areas, each having

all the characteristics of a conducting half-space boundary. Having accom-

plished the mathematical solution correctly it is found that, for all intents

and purposes, only one half-space boundary exists for any realization of the

randomly elevated surface. Thus, the only consequence of (17) which does not

have an immediate physical explanation is the fact that it is always the

lowest boundary which gives rise to the scattered field. Unfortunately, no

physical explanation for this particular re3ult has been found.

The Average Scattered Field

To the degree of approximation provided by the Fraunhoffer diffraction

integral, the far-zone scattered field in the direction ks and at a distance

R from the mean surface is given by

ks J o 46m (3s.r m ksE 47 g(R) k x k x )exp + jk m) d t  (18)

s s .mT s m

-+ -

where k =k +k zk k j 0 is the impedence of free-space and g is given

by (3). The sum is over all M+1 flat areas comprising the total discretized

surface and ( 0,A0) represents the flat area having a height and area A.

2
Consistent with the previous stipulation that A >> X , (18) reduces to them o

following

Es  j 27k )o H g(R) [k xk s x(z x h) (k sx-kix 6 (k sy-k iy)

M

I j (rm) exp [j (k sz-k iz) m (19)

m-0

If 4m 0,n',i,2,.., this expression for E is too large by the factor M+1;

this error results from treating each A as essentially infinite and it can be
m
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rectified by dividing the rhs of (19) by M+I. Taking the average of the cor-

rected version of (19) and noting that the average of j(rm)exp(jk s m) is

independent of m yields

<E s> = j 2ko no H g(R) [ks Xks x (z xh)] 6 (k sx-k.x) 6 (k sy-k iy)

"<J( exp[ (ksz-kiz) C > (20)

where

exp(-Jk iz) N = 0

j(W) = (21)
N

exp(-Jk ) T U(n - ) N > 1
i n-l n_

The factor multiplying the <.> term in (20) is identical to the average scat-

tered field, Es , for the case of a plane located at z =0 in the far-field

approximation. Thus, <E s> has the same direction as E 0 and it differs in com-

plex amplitude by the term <.> in (20). Since the scattered field is specular,

ksz = t k1 z and for the field in the upper half-space (free-space) k = -k.z,

thus, (20) becomes

<Es>/E 0 = <j( ) expI -j 2kzI> (22)

where k z = -k cos 0 .

For N -0, (22) yields the following result;

< 1 (21kizj) (23)

where is the characteristic function of . For N > I , there results
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<Es/0>s = exp(j 21ki I) .ff. ,di ... d d

-Go I . - "0 (24)

where p(Cl,C 2 ... ,rC) is the joint probability density function of the

indicated random variables. This result for the relative strength of the aver-

age field involves two parameters - the degree of correlation between the

non-overlapping areas and the number of areas which are important to the scat-

tering. According to the similarity obtained in [81 and reviewed in the first

section of this paper, total correlation represents the gently undulating sur-

face (9 >>A 0) while complete decorrelation now represents the uniformly rough

surface (1<< Xo) limit. When the areas are all correlated, it can be shown

using conditional densities that (24) reduces to (23) independent of N. This

is as it should be because for >>X (24) represents the case of essentially

a randomly elevated plaae. When the non-overlapping areas are uncorrelated,

(24) is very highly dependent upon N as should be expected since this repre-

sents the case of very strong mutual interaction on the surface. This, of

course, is simply a reiteration of the fact that as the flat areas become

decorrelated the mutual interaction effects on the surface increase. The re-

mainder of this paper will be devoted to understanding and quantifying the

importance of N for the case of uncorrelat, . surfaces (L << Xo).

For an arbitrary joint density functionrepresenting uncorrelated heights,

it is difficult to simplify (24). What is happening here is that the mathe--

matics of probability theory are beginning to cloud the physics of the process.

To overcome this limitation, consider the case where decorrelation implies

statistical independence. For a statistically independent process, the joint

density factors into a product of the marginal densities, i.e.

p(Yp(C-)..p(C)p( )
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The n-integration in (24) may be rewritten as follows;

f p( n)dn 1 - f p(Cn)d n = -F(C-

where F(C) is the common distribution function for , 1C,2 .... 4 N ; that

is, all the random elevations are identically distributed because of the

statistical homogeneity stipulation. Thus, when decorrelation implies sta-

tistical independence, (24) simplifies to the following form;

o

<Es/E>= f exp(j 2 Iki 4)p(C) [I - F(C) ]NdC (25)

Since F(--) - 0 and F(+W) = 1 , the effect of the N interacting areas on

the surface is to skew the integrand toward the negative range of C in (25).

Unfortunately, it is difficult to proceed beyond this general result without

a specific form for p() and F(4) for two reasons. First, it is diffi-

cult if not impossible to find a meaningful form for the integration in (25) for

arbitrary p(4) and F(4). Second, and more importantly, is the simple fact that

there is no formula for determining the effective number of interacting areas N;

it must be determined by computing (25) as a function of N and rationalizing

the results with the physics of the rough surface scatterIn& process.

Numerical Results and Interpretation

For Gaussian surfaces (the only class of surface statistics for which the

similitude has been proven [8]), the marginal density is

p() 1 exp(- 2/2< 2 >)

and
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1 - F(4) - erfc(1/2 ) (26)

where < 2> is the mean square surface height and erfc(-) is the complemen-

tary error function. Substituting these forms in (25) and introducing the

normalized variable n C/v <_/2> yields;

<E /E°> f exp (j 2r E n-n2)[erfc(ni)/2 Idn (27)

where E Ik ki 1/ koP > cos 0 is the Rayleigh parameter. For arbi-

trary E , this integration is straightforward but must be accomplished

numerically. For E -0 , the integral can be shown to yield I/(N+l);

consequently, as N increases (27) monotonically decreases. Figure 2

illustrates the behavior of the magnitude of the average scattered ield as a

function of E for N=0,1,2, and 3. Of particular note here is the fact

that the curves begin to flatten out as both E and N increase. This figure

also shows a very interesting result; for N=-O, 1, and 2 there is a specific

range of Z values for which each curve provides the maximum average scattered

field compared to all the other curves (for N =0 the range is 0 <E <l ). Fig-

ure 3 shows a plot of N values as a function of the corresponding E range

over which the average scattered field is maximized. That is, for each value

of N and Z corresponding to a point in Figure 3, equation (27) is maximized,

i.e. any other N will provide a smaller value for (27).

In order to appreciate the implication of this result it is necessary to

recall the meaning of N. As simulated in this analysis, N represents the effec-

tive number of uncorrelated areas on the surface which interact with the refer-

ence point on the surface. Equation (27) describes the influence of these

N-area interactions on the coherent scattered field as a function of the
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Rayleigh parameter or surface roughness. From a physical point of view, one

should expect that for small roughness each point on the surface scatters

independently of all the other points; hence, this corresponds to the N =0 or

no interaction. As the surface becomes rougher, it is certainly reasonable

to expect that the region of interaction on the surface should increase; hence,

N should also increase. With this bit of simple physics in mind, it is now

possible to interpret the results in Figures 2 and 3. In essence, Figures 2

and 3 show the range of 2 values for which a given number of interacting areas

on the surface are dominant or are most important to the scattering process.

3Figure 3 shows that for E < 5 , N varies very nearly as E3. Hence, the number

of interacting points or regions on the surface is increasing as the cube of

the roughness. To the author's knowledge, this is the first time that such

a direct correspondence has been demonstrated.

It should be noted that the parameter N may be interpreted [11] somewhat

differently than presented above. Although this secondary interpretation

does not follow directly from the analysis presented here, it would certainly

seem to apply to the original uniformly rough surface. In particular, the

parameter N may be thought of as the number of additional reflections that an

incident ray undergoes due to multiple scattering on the surface. From this

point of view, each value of N is clearly only dominant over a limited range

of roughness [11]. Furthermore, this analogy provides an alternate reason-

ing for moving from the N=n to the N -n +1 curve in Figure 2 as the Rayleigh0 o

parameter increases. That is, once the N-n curve drops below the N=n 0 +1

curve in Figure 2, this signifies the need to include more multiple scattering

or ray reflections on the surface. This interpretation and the results in

Figure 3 imply that the order of multiple scattering or the number of ray

reflections on the surface increases as the cube of Rayleigh parameter.

Clearly, this interpretation is synonymous with the increasing area of
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interaction on the surface.

Given the above rationale for selecting N as a function of E, how then

does one construct a continuous curve of the average scattered field as a

function of E ? A technique that has been found to be relatively fast is the

following. One chooses three contiguous values of N and computes (27) as a

function of E for each of the three values. One then finds the value of Z

which maximizes (27) for the middle N and this provides one point on the

plot of average scattered field strength versus E . This process is continued

until a smooth curve can be drawn through the points. Because N varies as

the third power of E , the maxima of (27) are very close together and so not

many points are required before the trend of the maxima can be established.

The only point where there will be some degree of interpolation required is

near the transition from N -0 to N-1.

Figure 4 compares (27), as computed according to the above prescription,

with the results of DeSanto and Shisha [6]. (Both results clearly show a

larger average scattered power than is predicted by physical optics.) The

disagreement is due most probably to the fact the integral equation for the

average scattered field used by DeSanto and Shisha is only the first term in

an infinite hierarchy of integral equations. The solution represented by (27)

is also an approximation because the large flat areas comprising the substitute

surface have essentially been replaced by planes. However, this simplifica-

tion does not significontly alter the basic processes responsible for the

effects of multiple interaction on the average scattered field and so it is

reasonable to express a high degree of confidence in these results.

Conclusions

The primary purpose of this paper is to present an alternative approach

to the problem of coherent scattering from a uniformly rough surfaces, i.e.
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surfaces for which the correlation length is significantly smaller than the

electromagnetic wavelength. The motivation for this effort is the need to

obtain a degree of physical insight which is not present in the exact singular

integral equation describing this problem. The approach is based upon the

remarkable similarity [8], with respect to the intermediate mathematical re-

sults, between the stochastic Fourier transform of the total current on the

gently undulating surface and the part of the stochastic Fourier transform of

the current on the uniformly rough surface which is responsible for the aver-

age scattered field. This similarity leads to the replacement of the uniformly

rough surface by a discretized version of the gently undulating surface com-

prising large, flat, non-overlapping, uncorrelated areas. This substitution

is justified by the fact that the stochastic Fourier transform of the current

on the discretized surface obeys exactly the same governing relationships as

for the uniformly rough surface.

A second major step in the analysis entails identifying the effective

number of interacting areas on the discretized surface in terms of orders of

multiple scattering on the surface and recognizing the necessity to monotoni-

cally increase the order of multiple scattering with increasing surface rough-

ness. In particular, it is found that the number of interacting areas on the

surface, or alternatively the order of multiple scattering, necessary to maxi-

mize the average scattered field, varies as the cube of the Rayleigh rough-

ness parameter. The maximum property of the average scattered field is con-

sistent with earlier arguments [8] that the uniformly rough surface produces

a maximum coherent field for a fixed Rayleigh parameter.

The essence of the approach is that of solving a simpler problem which

can be shown to have the same mathematical properties with respect to the

average scattered field as the actual surface. Clearly, it is desirable
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t compare the results obtained herein with a solution of the exact integral

equation for the average scattered field. However, this must await further

study of the integral equation and, in particular, the analytic properties

of the average scattered field for "off-shell" (k # -k. ) conditions.
1z

Acknowledgements

This research was supported by the Electromagnetic Sciences Division,

RADC, Hanscom AFB, MA., under contract No. F19628-81-C-0084. The numerical

results were very capably accomplished by W. J. Curry. The author would also

like to thank J. A. DeSanto and R. L. Fante for their assistance and encourage-

ment during some of the difficult times in this effort.

3-22



References

1. Barrick, D. E. & W. H. Peake, "A review of scattering from surfaces with

different roughness scales," Radio Science, Vol. 3, No. 8 ,pp. 865-868, 1968.

2. Fung, A. K. & H. J. Eom, "Note on Kirchhoff rough surface scattering solu-

tion in backscattering," Radio Science, Vol. 16, No. 3, pp. 299-302, 1981

3. Marsh, H. W., "Exact solution of wave scattering by irregular surfaces,"

J. Acoust. Soc. Am., Vol. 33, No. 3, pp. 330-333, 1961.

4. Shen, J. & A. A. Maradudin, 'Multiple scattering of waves from random rough

surfaces," Phys. Rev. B, Vol. 22, No. 9, pp. 4234-4240, 1980.

5. Zipfel, G. G. & J. A. DeSanto, "Scattering of a scalar wave from a random

surface: a diagrammatic approach," J. Math. Phys., Vol. 13, No. 12, pp.

1903-1911, 1972.

6. DeSanto, J. A. & 0. Shisha, "Numerical solution of a singular integral

equation in random rougl. surface scattering theory," J. Comp. Phys., Vol. 15,

No. 2, pp. 286-292, 1974.

7. DeSanto, J. A., "Coherent multiple scattering from rough surfaces," in Pro-

ceedings of the Symposium on Multiple Scattering and Waves in Random Media

(Edited by P. L. Chow, W. Kohler, & G. Papanicolaou), North-Holland, 1981.

8. Brown, G. S., "A stochastic Fourier transform approach to scattering from

perfectly conducting ralLdomly rough surfaces," IEEE Trans. Antennas & Propa-

gation, in press.

9. DeSanto, J. A., "Green's function for electromagnetic scattering from a

random rough surface," J. Math. Phys., Vol. 15, No. 3, pp. 283-288, 1974.

10. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, New York, 1964.

11. Liszka, E. G., "Scattering from randomly rough surfaces," Ph.D. Thesis,

Catholic Univ. of America, Washington, D. C., pp. 15-18, 1977.

3-23



Figure Captions

Figure la. Geometry of the rough surface interface.

Figure lb. Discrete approximation to the true rough surface in Figure la.

The dashed continuous line is the original surface while the non-

overlapping horizontal line segmets form the discrete approxima-

tion to the surface.

Figure 2. A plot of the coherent scattered power as a function of surface

roughness for N=0,1,2,&3. Note that for each N, there is a range

of surface roughness for which the coherent power is larger than

for all other values of N.

Figure 3. A plot of the N value which maximizes the average scattered power

over the indicated range of surface roughness. The figure illus-

trates the increasing region of multiple interaction on the surface

as the surface roughness increases. The solid line represents the

3relationship N -E

Figure 4. A comparison of the coherent scattered power as a function of sur-

face roughness as predicted by single scattering (N=0), DeSanto's

& Shisha's computations, and equation (27). N, or the number of

interacting points or regions on the surface, has been replaced by

a continuous function of Z which fits the results in Figure 3.

3-24



Figure la

Figure lb
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Scattering From A Class of Randomly Rough Surfaces

by

Gary S. Brown

Applied Science Associates, Inc.

Apex, North Carolina 27502

Abstract

This paper develops new results pertaining to electromagnetic scatter-

ing from perfectly conducting random surfaces for which decorreiation does

not imply statistical independence. Using an exact theory for the current

induced on the surface and the far-field approximation for the scattered

field, it is shown that the incoherent scattered power consists of two parts.

The first part corresponds to the so-called diffuse scattered power. The

second part is specular in its angular dependence and is a direct consequence

of the fact that the two point joint density for the surface height, slopes,

etc. does not reduce to the product of the single point joint densities for

infinite separation distances. Computations for a gently undulating jointly

exponentially distributed surface show that the incoherent, specular power is

equal to coherent scattered power for the Rayleigh parameter near onso. Whn

the Rayleigh parameter is large, the Incoherent specular power is :;iglifi-

cantly larger than the coherent power. The analysis ftirther iudict..,; thalt

scattering measurements provide an ideal way for identifying this cl.ass tif

surfaces.

Introduction and Summary

Frequently, when comparing measurements of scattering from randon ly

rough surfaces with theoretical models there are little or no data on the

statistical properties of the surfaces. This limitation means that the
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surface statistics must be assumed. Unfortunately, the choice ut the surlacc

statistics is usually based upon analytical convenience rather than reality.

If the assumed statistics are not a good approximation to the' .jc0,., .nr.,

this can lead to erroneous rejection of the theory or expensive additional

experimentation.

Recently, Lennon and Papa [1980, 1981] employed digitized tLrraii mal:;

to obtain estimates of very large scale surface height statisLicz, which could

then be used to predict scattering from the region in question [Papa, et ol.,

1980]. Because of the complexity of the theoretical scUttering model, it is

not practical to use measured statistics such as joint height histogramn.

directly in the scattering computations. A reasonable alternative is to ")V.t-

fit" these statistics to a functional form for the joint height probail ity

density function which, in turn, is amenable to use in the scattering theory.

Since the functional forms for the joint height statistics may be quite gener-

al, scattering theories based upon Gaussian surface statistics are no longer

adequate. Beckmann [1973] has considered the problem of scatLering fruin non-

Gaussian surfaces when the only height data available arc the marginal den-

sity and the correlation function. However, his analyses wid results arc

restricted to the case where decorrelation of the surface hight implies sta-

tistical independence.

The purpose of this paper is to consider scattering from surfaces Jor

which decorrelation does not imply statistical independence. Th. motivation

for this study is threefold. First, there is no obvious reason why a reat

surface should be statistically independent when it is decorrelated. Also,

from a mathematical point of view statistical independu.ice is not, in general,

implied by a lack of correlation [Papoulis, 1965]. Finally, the re are a

relatively large number of joint probability functional forms [or which
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decorrelation and statistical independence are not synonymous [Lennon and

Papa, 1981] and there is no apparent reason why these should be rejected

a priori when attempting to determine the "best fit" functional form.

The analysis starts with describing the far-zone scattered field by the

standard far-field diffraction integral involving the current induced on the

surface by the incident plane wave and the Fourier phase kernel. Averages

necessary to compute the mean scattered field and its variance are converted

to convolutions in a non-stochastic Fourier transform space [Brown, 1982].

The advantage of this approach is that the spatial dependence of the trans-

formed current is known and this in turn, implies that the average scattered

field is specular, e.g. it is nonzero for one and only one scattering angle.

The second moment of the scattered field contains a specular component due to

the nonconvergent nature of the two point joint density for the surface

height, slopes, curvatures, etc. of the surface as the distance between the

two points on the surface approaches infinity. When decorrelation implies

statistical independence, this specular component is exactly canceled by the

subtraction of the square of the mean scattered field; thus, the variance of

the scattered field contains no specular components. However, if the surface

is not statistically independent when it is uncorrelated, the variance of the

scattered field is shown to have a nonzero specular component which is depel-

dent upon the difference between the decorrelated joint density aid the

square of the marginal or single point density for the surface height, slopes,

curvatures, etc. This result is a simple consequence of the fact that no two

points on the surface scatter statistically independent of each other regard-

less of the distance between them.

In order to illustrate this effect, a very gently undulating surface

which is amenable to the physical optics approximation for the Induced surface
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current is assumed. The two point joint height probability den..ity lucLiu,

is taken to be exponential and the specular part of thC Scattered ticld w.aii-

ance is compared to the square of the mean scattered field .s a rim(ertio .of

the Rayleigh roughness parameter (E). The specular part of tile scattered

field variance goes to zero as the Rayleigh approaches zero; howevr, as th'L,

Rayleigh parameter increases, it also increases to a peak valut' ini tiv t'igli-

borhood of E-1 where it is equal to square of the mean scattered field. For

larger values of £, the specular part of the variance greatly exceeds the

square of the mean scattered field; the former behaving asymptotically as

-3 -6
E while the latter goes as E

The importance of this analysis rests primarily in its jmi~licaLioliS. If

the Rayleigh parameter is very small (E <<l) or very large ( >>1), it is

doubtful that the specular component of the variance of the scattered field

will be measurable. However, if the geometric and electromagnetic parameters

of the experimental scattering system can be adjusted so that E - 1 then this

specular part of scattered field variance should be detectable. if no specu-

lar part of the field variance is measured then one may safely conclude that

the surface is statistically independent when it is decorrelated. A finjal

implicacion of this analysis is that one should exercise great care iii tiL-

ting arbitrary functional forms for joint probability densities to hiitogram

data for purposes of predicting theoretical scattering trum the butiaCe.

Scattering Analysis

The stochastic surface z - r(x,y) is assumed to be a zero mean statis-

tically homogeneous process. Beneath the surface, the medium is taken to he

perfectly conducting while free-space comprises the medium above. A magiietic

field of the form H (r) - H h exp(-J ki" ) is incident upon tLhe surface; It is

the polarization of the magnetic field, ki - ki/k0 is its direction of
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propagation, and k 0 21/X 0 isthewavenumber. Although the far-field scattering

approximation leads to difficulties when dealing with unbouinded i lluminait ion

[Sancer, 1969], these problems can be circumvented by relting ti, rsualtL to

flat surface "scattering" in the same approximation. With this CaVeat in

mind, the far-zone scattered electric field is given by the following form;

Es J ko0 g(Ro) f k x k () e x p (j k d - r) (1)

where no is the impedance of free-space, g(R ) - exp(-j k R )/R o , R is the

distance from the origin of the surface based coordinated system to the far-

field point, k s/k 0 k is the direction of the far-field point of observa-
-9. -)- -4- -

tion, and rt M xx + yy is a point on the z-0 plane. The quantity J(r) is

defined as follows;

= ~8 )[I+ (o ax) 2 + (aW/ay) 2 ] (2)

where J (r) is the current density on the surface and at/Dx and 3/ 3y are the
-9.

x and y slopes of the surface at the point (,rt) Redefinition of the cur-

rent as in (2) permits an integration over the z=O plane in (1) rathcr thin

the actual surface. With r = j kOno g(R0 )/41r , the average scattered field

is given by

Sx<J(r)exp(j k 1)>] exp(j k r )dr (3)

where t + k 8 - k and the <*> brackets denote an ensemble average over5t  52 5

all stochastic quantities upon which J(r) depends. With p/(C,Z) equal to

the single point joint probability density function for the stochastic vari-

ables ; and Z , the average in (3) is as follows;

4-5
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<J(r)exp(jk z)> - ff (r)exp(jk O)p ( ,Z)d dZ (4)
sz fi8 1

where Z is symbolic of all Like surface height derivatives wii&, Ik-tc viic

J(r). Since this number is in general infinite, Z stands for V ,...

[Brown, 1982] and the dependence of these higher order surface dcrivaLivcs

upon r is implied. With
St

J(r) - k xks xJ(r) = (ks'l -i ) - )

and using (4), the squared magnitude of the average scattered field is easily

shown to reduce to the following form;

I4.>I. * , n ffffff ci*) '""s ' ,lr' ]p(
IE> _ (r0 r' )exp [j k sz ( -')l I (C. Z) P (C Z'

where the symbol * denotes the complex conjugate operation and pl(V,') is

not conjugated because it is real. Following a similar development, the

mean squared scattered field may be expressed as follows;

<s 2> r ffffff (().J*(s')exp[jk 5 (-,' ) ]p2  ,',Z, 1 V;ArY

4. 
17exp[ik t. (rt-r )] dr d'dZdZ'drtdrt (7)

where Art  r t- .. The function P2 in (7) is the two poit jitit probabil-

ity density function which depends upon two sets of stochastic variables and

the horizontal vector distance between them.

If the stochastic Fourier transforms are defined as follows;
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J(tkK) u JJ(r)exp[JkC + JKZ]didZ (8a)

1 (k,K) - ffp( ,Z)exp[jk + JKZ)dtdZ (8b)

P2 (kk',KK';tr) - ffff P2 (;',ZZArt)exp[j(k +jk' '

+ KZ + K'Z')]dld 'dZdZ' (8c)

and it is noted that

where F symbolizes the stochastic Fourier transform operation, the integra-

tions over the stochastic variables in (6) and (7) may be alternatively ex-

pressed as convolutions in transform space [Brown, 19821. The advantage of

this approach is that the new variables of integration, i.e. the transform

coordinates, do not depend upon rt , t , or Ar . Rewriting the integrals

in (6) and (7) as noted above yields

(270 2+2 SO

Pl(-kk.-K) exp Jks(t-'r )]dkdk'dKdK'drtdr ('4)

and

2 I 2  crr r12l~.,.,T, (kk-k sz-k",-K'-K' ;A-t

(2w) 
2+ 2 s.

expA r '(-Thdkdk'dKdK'dr drt  (10)
Ls t t - 'r 't
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The quantity S,, is equal to E i and it results from the dependenice of
i=2

a J") on all orders of surface height derivatives [Brown, 19821. The euhur-

ent scattered power is proportional to I<Es while the incoirtkLt
- 12 > _ -, o i

scattered power is proportional to Var(E) = <(E f2> - <s j or the

variance of the scattered field. Using (9) and (10), the variance of ti'

scat~tered field may be written as follows;

- rl l ii f + - , ,)

(2w) 2 +2 S. ff f ftC2sZt

-l(ksz-k-K)Pl (-ksz-k"-Kl) dkdk' dKdK' drtdr (1)
J L U . is2ssC

In view of (5) and (8a), the stochastic Fourier transform of 3(r) is

proportional to the stochastic Fourier transform of J(r). However, it has

been shown [Brown, 1982] that, in order to satisfy the sLUCILa4Lic Fourier

transformed magnetic field integral equation for the current, J(r ,k,K) must
t

-44-

'I have the following dependence upon rt

Vtk,K) - '(k,K)exp(-Jk (12)

where t is defined by k + kzZ . That is, the stoclhastic Fourierwhee itsdeind y i t =  i z

transform of the slope normalized current exhibits the same depeiidence upon

rt as the incident magnetic field. Using (5), (8a), and (12) in (11) and
4

converting to a Art coordinate yields

Var(E a) - -L~ I ffff j((-k 1q)j (k,K)j*(-k',-K
(2+2S q

• (P2 (k sz-k,-ks,-kv,-K,-K';r) (k sz-k,-K)* (-k SZ -k)

x JAt i)] dkdk'dKdK'dart (13)
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where A is the illuminated area and the sumation is over the values q x,y,

and z.

It should be noted that (13) is an exact result involving no a.pproxinLl-

tions other than the far field integral description of the seatterhing pro-

cess. The function pl(-,.) is also called the single point joint characLer-

istic function of the stochastic variables and Z while Is(.,.,.Art ) Is

the two point Joint characteristic function of 4,C',Z, and V. The important

point to note about (13) is that apart from the phase factor onily p. depends

upon Ar . The explicit dependence of p2 on Ar comes about through the sur-

face height correlation function R(Ar t ) and its higher order derivatives where

t ) - +
R(rt <rt' +rt) t)

When , the correlation function and its higher order derivatives ap-

proach zero and this corresponds to the condition known as decorrelation. If

decorrelation implies statistical independence then

lim ^ jl(ksz-k,-K)jl(-ksz-k',-K') (14)

or the two point characteristic function factors into a product of singie
-4

point characteristic functions. When this occurs, the Art-integr'nd in (13)

ttvanishes as ]Ar t I -- and so it has a finite support. Thjis imoplies th.at tihe

-+ -3'

Var(Es) will contain no delta function dependency upon k st-kI. 'rhus, wiienl

decorrelation implies statistical independence, Var(E ) will cvtnai, no bpcc-s

ular terms because specularity in the far-field approximation implies a tenu

which varies as 8(k -_k)
at it

If decorrelation does not imply statistical independence then (14) is

Invalid and the term

4-9
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f rnP 2 PI
t I ~

will be nonzero. The consequences of this result may 1w cisi ly : 1),m by rgu-

I larizing the Ar t-integrand in (13) by subtracting and then adding Lerins con-

taining the above limiting form. This operation leads to the following

result;

(2w)

2 ex - o- ' dKdK' dAr

ex t s t  t

+ 1rl 2A A( - f (

*(27T) q( 2,,-: st t JJJ s

(15)

The second term in (15) is clearly specular in its angular dependence and it

* is entirely a consequence of the difference between decorrelation and statis-

tical independence.

It might appear that this result is a freak consequence of the unbounded

nature of the incident field; however, such is not the case. The analysis may

be carried through using a plane wave having a finite support (a beam plane

"I wave) provided that the linear dimensions of the illuminated area are large

relative to the decorrelation length of the surface. The only essential dif-

ference between the limited area result and (15) will be the appearance of

the diffraction pattern of the finite illuminated area. If the linear
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dimensionsof the illuminated area are not large compared to the ducorrulatloil

length, the above results do not apply. However, this is an entirely dif-

ferent problem which will not be considered here.

Discussion

The appearance of a specular term in the expression for the incoherent

power is certainly a bit surprising. Consequently, it is desirable, if not

mandatory, to seek some physical explanation for this result. Unfortunately,

no such explanation has been found primarily because the statistical moments

of the scattered field are obtained by mathematical operations governed by

the laws of probability rather than physics. From a very fundamental point

of view, this problem is closely akin to inquiring into the physical signifi-

cance of statistical dependence and this question, to the author's knowledge,

has no satisfactory answer. When decorrelation implies staristical indepen-

dence, there is no specular part of the incoherent power because the second

moment of the scattered field behaves asymptotically (as IAr It ) exactly likement

the square of the mean scattered field. When decorrelatioun does not imply

statistical independence, this is not the case because no two points oil the

surface, even as Art- , scatter statistically independent of each other.

That is, the second moment of the scattered field does not approach the square

of the mean field even as lAr tI~' As a final word of caution, one should

not confuse functional dependence with statistical dependence; they are, in

general, completely unrelated mathematical concepts.

The appearance of the specular term in (15) coupled with the lack of any

exp rlumtal scattering data shoving this effect (to the author's limited

knowledge) suggest that decorrelation does indeed imply statistical indepen-

dence for real surfaces. However, the purpose of the present analysis is not

to address this question but rather to consider the theoretical scattering
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implications of statistically dependent surfaces. It is th=cifore benefici,

to illustrate the strength of the specular part of the incoherent scattered

power using a relatively simple example. Such is the intvIL of thLa icxt

section.

Numerical Example

In order to keep this example as s-lmple as possible, the surtacc is

stipulated to be very gently undulating. More specifically, the surface higtiL

spectrum is postulated to contain no spatial frequencies the order of or

larger than the electromagnetic wavenumber k and the variances of all orders
0

of surface height derivatives are taken to be arbitrarily small. Under these

conditions the physical optics approximation for the current induced on the

surface is valid, I.e.

8 (r) - 2ni(r)^ X Hx r(b

where n^(r) [-(a ax)1 - (1 /By) +2]/[1 + (3 /3x) 2 + (c/ y)21/2" is the

upward directed unit normal to the surface. Substituting (16) in (2), taking

the stochastic Fourier transform of this result, and then separating the r -

dependence off as in (12) yields

(kK) - 2H (270 ((k-k)[Cq(K) -jc46'(K )6(K ) (kly)6(Kx)

q 0 iz' z lX 2y) y l
(17)

where SMl- + § and the K's are transform variables associaLvd wit the

following stochastic variables (with p - x or y);

K 2

K2 4-p 4/2 3

K ap+' ia;/p ,V 2 , V3;,.

The constants - x.( xd) with both p and q ranging independenLly over x, y,P

and z are related to the polarization of the incident field. Substituting
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(17) in the second or specular term in (15), denoted as Vdr(L) , yields the

following result:

Var(E.) Ir1 2 (27) A6(k _k )(2H[ + (ik )(kY)
at it 0 z

2(ksz-k iz'k sz +kiz ; Arti) l(ksz- kiz)P (-k sz iz J
(1 8)

where and Pl are now the joint two point and marginal chataCLcrisLic iulc-

tions, respectively, of the stochastic height only. Normalizing (18) by the

squared magnitude of the field scattered by a flat surface, IE°1 2 , and notings

that specularity implies ksz M -k z leads to the following;

Var (Es) as _
- p(-2klz 2k z;j I-~I ' ) -P(-2k z)p(2kz )  (19)I~s' z iz iz z

The squared mean scattered field, similarly normalized, is given by

<Es>1
2

- 1 (-2kiz)j(2kiz) 
(20)

The specular part of the incoherent power, as given in (19), should be

compared to the first term in (15) in order to determine which is dowinant.

However, the first term in (15) will depend, in the physical optics approxi-

mation, primarily upon the slope statistics. Since (19) is governed by the

height statistics, it is possible for these two terms to exist in alMost any

ratio. A more meaningful assessment of (19) results from comparing it Lo

(20). Such a comparison, in essence, relates the specular portion of the in-

coherent power to the coherent power scattered from the surface.

For this example the Joint probability density function is taken to be

exponential [Lennon and Papa, 1981]. e.g.
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p(C. 2> exp f t2 (21)

2w

21I<2  r2> / 3

where <C 2> is the height variance. The joint characteristic fi' i,,,, c.an,

with the aid of Fourier transform tables [Campbell and Fost.r, 1961], be

shown to have the following form;

r 2) 2213/2
P(kk';IArtl--) - 1 + <-2> (k2+k,) (22)

3

The marginal characteristic function may be obtained from (22) by taking k'=O.

Substituting these results in (19) and (20) yields

Var(E s ) s 2 --3/2 2 -3
E 12 - [I + 8 2/31 - ( + 4 2/3] (23)IE;I12

and

I<Es>1 2 -3

2 [I + 4Z2 /31 (24)

where Z-k 0r'> cosO is the Rayleigh parameter and 0 is the .n~glo oL itkci-

dence measured from the z-axis. Figure I illustrates Like variaLilI U

Var(E.)s/IE'12 (the incoherent specular power) and I -E>12 /JE1 2 (the coer-

ent power) as a function of the Rayleigh parameter.

ihen the Rayleigh parameter is small, the incoherent specular power is

casuidarably smaller than the coherent power as it should be. In the neigh-

borhood of E-1 the incoherent specular power is equal to the coherent power

and for E >1 it greatly exceeds the coherent power. For large Rayleigh param-

eter, the incoherent specular power behaves asymptotically like 3 While the
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coherent power is proportional to Z6

It is obvious from the results in Figure 1 that the incoh, rent specular

power cannot be ignored. Since the total power scattered from tiht sJrf-cL,

must be in agreement with the incident power, the existence of the coherent

specular power must be at the expense of the diffuse part of the incoherent

power, i.e. the first term in (15). That is, the Rayleigh pa raMLCr Way have

to be relatively large before the diffuse part of the incoherent power is sig-

nificant relative to the incoherent specular and the coherent powers. Thus,

when comparing the diffuse power scattered from statistically independent and

dependent surfaces (as A{rt -1) with comparable height variances, one should

expect to see a significant difference for small to moderate values of the

Rayleigh parameter. For very large values of £ this difference will disap-

pear and the asymptotic theories of Barrick [1968] or Sancer [1969] will be

valid. For statistically dependent surfaces, Figure 1 illustrates that the

validity criterion for these asymptotic theories should be based upon a vanish-

ingly small value of incoherent specular power rather than a negligible coler-

ent power.

The reader is reminded that the purpose of this paper is to analytically

describe the scattering from a surface for which decorrelation dues not imply

statistical independence. This paper does not advocate the existence of such

surfaces in the real world; only measured statistics can answer this question.

However, these results do show how electromagnetic scattering measureulents can

be used to identify such surfaces provided that great care is taken in separat-

iag the coherent from the incoherent scattered power. Finally, these aialy-

tical results also show that extreme caution should be exercised in fitting

statistically dependent functional forms for the probability densities to

limited histogram measurements if one is interested in conditions correspond-

ing to 1 S 0 104 4-15
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Figure Captions

Figure 1. A comparison of the coherent and incoherent speculair puwvrs eaL-

tered by a perfectly conducting, exponentially diStribuLcd, ,',)Lly uuJu-

lating, random surface. Both powers are normalized by a c UW I& fatrLor.
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Abstract

This paper derives rigorous results pertaining to the validity of the

far field approximation for scattering from randomly rough, perfectly conduct-

ing surfaces having arbitrary statistics. The methodology employs the stochas-

tic Fourier transform of the current induced on the infinite surface by either

a bounded or unbounded incident plane wave. The results are general in that

no approximate simplifying forms for the current are employed. Exact expres-

sions are obtained for the mean and variance of the scattered field for unbounded

illumination and they are compared to the far field approximations to illustrate

how the latter simplifications fail in this limit. Some of the pitfalls of the

far field approximation in the case of beam illumination are discussed. When

the incident plane wave is bounded, the conventional far field form for the

mean scattered field can be rigorously derived for arbitrary surfaces pro-

vided the cross sectional area of the incident beam is large compared to the

square of the electromagnetic wavelength. The conventional far field result

for the variance of the scattered field is shown to require the additional

stipulation that the cross sectional area of the incident beam contains many

decorrelation intervals of the surface roughness. The results obtained herein

are important because they hold for arbitrary surface statistics. Whereas

they appear to duplicate previous results, it must be remembered that the

earlier results were only valid for a special class of surface statistics, i.e.

surfaces for which single scattering theory holds.
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Introduction and Summary

One of the most useful descriptions of a deterministic body scattering

(or radiating) electromagnetic energy is the so-called far field approximation.

The general formula for the electric field scattered by a perfectly conduct-

ing body and evaluated at a point R exterior to the body is as follows;
o

RV XV dS ()
(,0 0 k 0 0 0 f 8(P RO

where Io = VP/T7F is the characteristic impedance of free space, k =2T/X
0 0 0

is the electromagnetic wavenumber, G is free space Green's function

exp(- jkR -rl)/4-irl-ri , and J is the current density on the surface

S of the body. If the point R is sufficiently far removed from the body0

that (2) may be approximated by the following expression [Van Bladel, 19641

-+ -J A A I.A _+

Es(Ro) j kon G(Ro) k x k x IJ(r) exp (j k k .r) dS (2)
0 0 0 0 a s 05

where k is a unit vector specifying the direction of the point R , thens 0

(2) is essentially the definition of the far field scattered by the body. The

results of extensive computations by Hansen and Bailin [1959] have provided

much insight into the magnitude of R necessary to accurately replace (1)

by (2) for deterministic currents. Consequently, the range of validity of the

far field approximation is reasonably well understood for deterministic prob-

lems.

When the geometry of the scattering body varies on a sample-by-sample

basis so that it is more conveniently described in a probabilistic manner,

the concept and implications of a far field are less well understood. The lack

of clarity for this situation stems from two difficulties which are not
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encountered in the deterministic case. First, for the deterministic geometry

one may postulate certain cannonical current distributions, compute E from
S

(1) and (2), and obtain very useful information on the range of validity of

the far field approximation. However, for the random geometry this cannot be

done because the dependency of the current upon the random geometry is criti-

cal and it must be obtained (not postulated) from the boundary equations.

The second difficulty stems from the need, for the random geometry problem, to

know not only E but all or a portion of its statistical moments and these

are not as simply related as the scattered field and power in the determinis-

tic case.

A few studies have obtained useful results on the random geometry-far

field problem (Barrick, 1965], [Miller, 1982], [Fung and Eom, 1982]; however,

they are limited by the use of an approximate form for the current and only

the inclusion of a quadratic phase term in (2). What is really needed is some

general insight into the far-field approximation, as it applies to the random

geometry situation, which is not limited by restrictive simplifications. Such

is the goal of this paper.

The first problem to be considered is that of a randomly rough, perfectly

conducting surface which is infinite in horizontal extent and illuminated by

an unbounded plane wave. This infinite geometry/illumination case is selected

as the starting point because the current on the surface assumes a somewhat

simplified form and this permits the derivation of some useful exact results.

Although the far field assumption is not applicable to this problem, results

obtained from this approximation are reviewed in order to illustrate the func-

tional dependencies predicted by it. The mean and the variance of scattered

field are next obtained using the exact expression for the scattered field,

i.e. (1). The mean scattered field is shown to be a plane wave propagating

away from the surface in the specular direction. The amplitude of this plane
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wave is reduced relative to the amplitude of the incident plane wave by the

effects of the roughness on the surface. The polarization of the scattered

plane wave is dependent upon the multiple scattering processes occurring on

the surface and this shows that the mean scattered field, contrary to previous

statements [Moore and Williams, 1957], is governed by the laws of diffraction

and not reflection.

The exact expression for the variance of the scattered field is found to

be considerably more complicated than the mean scattered field relationship.

However, the exact expression clearly shows that the far field approximation

is not applicable when the surface and the illumination are unbounded even

though the point of observation is taken to infinity.

The results obtained for the unbounded geometry/illumination problem are

important from a theoretical point of view but they have little significance

relative to the practical situation wherein the illumination is bounded, i.e.

a beam plane wave. When the incident illumination is bounded, the problem

becomes difficult because the surface current is more complicated. However,

2
it is shown that when the illuminated area is very large compared to X

0

the current appropriate to the unbounded illumination case in conjunction

with the bound on the incident illumination may be used with little error.

This result for the current is then used in (1) for the purpose of com-

puting the mean and variance of the scattered field. When multiple scattering

on the surface is negligible, this procedure produces an exact result. When

multiple scattering is important, the procedure leads to an underestimation of

the true illuminated area on the surface, i.e. the true illuminated area is

the area over which the current is nonzero. However, as long as the geometric

2
cross sectional area of the incident beam is large compared to X , the error0

in this procedure is small. Proceeding with this approach, i! is possible to
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show in a very clear manner why the far field approximation for the scattered

field and the case of a randomly rough scattering surface is not valid as the

illuminated area becomes infinite. Finally, conditions are derived under

which the far field simplification is valid for arbitrary surfaces.

While the far field approximation has been used extensively in randomly

rough surface scattering problems, justification of the approximation has here-

tofore been limited at best. The results presented in this paper provide a

general foundation for the approximation and yield insight into why it fails

for an infinite surface.

Background

The surface described by z =  (x,y) is assumed to be infinite in the

x and y directions and for z > C(x,y) the medium is taken to be free space

while for z < (x,y) the medium is perfectly conducting. The stochastic

surface height (x,y) comprises a zero mean, statistically homogeneous process

with the mean surface corresponding to the = 0 plane. A plane wave illumi-

nates the surface and its spatial support in the x-y plane will be taken to be

either bounded, i.e. a beam plane wave, or infinite. The explicit form of the

incident plane wave is as follows;

E = E exp(-j i')O(r ) e (3)

4. A
where ki = ko k = k + ki z and ki specifies its direction of propagation.

t Z
The function O(rt) represents the support of the incident plane and its

t

dependence upon r= xx + yy signifies that it is independent of the z-

dimension.

The mean field scattered in the direction k and having a polarization

e is, in the far field approximation, given by the following;
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<Es'e> x k x J(J(r) exp (J k 4 + k.") dS>
z L

where k +k z = k k and r = j ko o G(Ro) To simplify matters somewhat,
t z

the integration over the rough surface is transformed into an integration over

the z = 0 plane through dS = 1+(/ax)2 + (4/ay) drt where drt = dxdy

and -4/ax and a4/Dy are the surface slopes in the x and y-directions. Thus,

defining the modified current J(r) as

J_). =Jl + (q/3x)2 + (aC/y)2 +J~r)/ax ) J (r)

the far field approximation for <E e e> becomesS

<E -e> = F a-k X f < JX(r) exp (j k s 4)exp(j k r ) dr (4)5s 5 s 5 s" t t
,1z t

The average in (4) may be explicitly written as follows;

4.rr+). 2J (r)exp(J ks  ) CO f""f J(rPl(,V V 4,'')exp(jks C)d dV4"-' (5)

where V4 is symbolic for the surface slopes, 724 is symbolic for the sur-

face curvatures, etc. The function p1  in (5) is the single point joint

probability density function for C, VC, V 2, etc. The integrations in (5)

may also be written as convolutions of transforms with respect to the stochas-

tic variables, i.e.

S- J(2r,)kOD "") k1 - (ks -kl,-k 2 '.- ) dkIdk2- (6)
(2'r) a '

where a ' L i and
i-1
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3J(r) exp jklr, + j Vn • kn+ 1 dC dV(''" ( 7a)

n=l

(Di =f .. P,~~r.. exp (jkiC + j I V~' .k n1 ) dd7t... (7b)

n=l

With K signifying the dependence upon k 2 ,k 3 , a substitution of (6) inLo

(4) yields the following;

<E e> = r e k x × J(rtk l,K)) 1 (k -kl,-K)exp(jr dk dkS S S T Sco S tzS t t1
(2r) (8)

(8)

It should be noted that (i is the single point joint characteristic function
I

for the random variables C,V ,V2 ," "

In order to proceed further one must have some knowledge of the stochastic

Fourier transform of the modified current, i.e. J(rt,kl,K) . In particular,
-

the variation of J with rt  is essential to determining the directional

characteristics of the mean scattered field, i.e. the dependence of <E s>S

upon ks  The only case for which the exact r t-dependence cf J is known
t

is when the incident plane wave is unbounded or O(r ) 1 for all r ' When

this occurs, it has been shown [Brown, 1982b] that J assumes the following

form;

= ,(k1 ,) exp (-Jk. r t )  (9)
t

Substituting (9) in (8) and taking orthogonal to k in the specular

direction yields

<E s " >  ( 27T) r 6 (kst- _k )  e" (ki SK) CDi (k sz-kl'-K) dkl1dKl (21) (10)

t t fj4 ./ z

This result indicates that the mean scattered field is a spherical wave modified
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by a product of two amplitude weighting factors - the 6-function and the inte-

gral term. The integral term is entirely a consequence of the surface rough-

ness. The 6(k s-k i) factor, loosely interpreted, shows that the scattered
t t 

i
field is nonzero only in the direction k k it. Furthermore, since the point

of observation is above the surface the condition k -k must also be
s z z

satisfied. The form of (10) is certainly less than satisfying and, in fact,

only has meaning when compared to the field "scattered" by a flat plane in the

far field approximation [Brown, 1982a]. In short, (10) cannot be taken liter-

ally but, instead, must be interpreted.

The second moment of E * , in the far field approximation, is obtained
s

by forming the product of (2) and its complex conjugate and then averaging

over all stochastic variables. The averaging operation requires use of the

two point joint probability density function, i.e. p2( 29 2..;rt-r2

which depends not only upon the random surface characteristics at r and
t1

r but also on the vector distance r -r . Since E is polarized orthog-t2  tl t2  s

onal to k in the far field approximation, e is also chosen to be orthogonal
A

to k and the second moment, using the far field approximation, can be writtens

as follows;

<E ^; ei2> 2 Jr eJr2t -r )exp[jks.(r r)

dr drd~t d4d 2 dVldV 2 '-
t1  1 21

Converting the integrations over the stochastic variables to convolutions in

transform space and using (9), the above result can be manipulated into the

following form;
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Ee .. A- (20 2s[.[..... . ... .... j _ I ..*( 2 2) e-

• 2 ( -k 1 -ks "k-2 -1'-K2 ;r t)exp [ (s t - i
t ) "Art] dA'rtdkdk2 dK K2

(1.1)

where A is the illuminated area and

+ K,1D41 + K2 - 2 1] d4Id4 2 d( I)d(ar 2 1  (12)

is the two point joint characteristic function with D and aC2 symbolic

for all orders of surface height derivatives Vni,n-1, 2 ,
'  . Assuming that

the surface statistics are such that decorrelation implies statistical indepen-

dence yields

+ m p2(l,42, la2; ) p1 ( l, I)P1 (Cl1 , 2) (13)Artl

This condition implies that (2 will have infinite support with respect to

AIr and so the transform of D, contained in (11) will yield a 6-function
t

dependence upon k st-kit This problem can be overcome by using a function

in the integrand of (11) which has a finite support with respect to Art

Thus, by subtracting and adding %(-,.;oo) to the integrand of (11) yields
2

S2> r Air 12  -1- _+ )_+1 -)-)~ft~ . _+<Esel> - lira 2s [(k ,I1). [J* (-k 2,-_2) igI(2 (k sz-kZ,-k s-k2,-Kl,-K2;Art)

( 
z

Ar12 t-1.
+ - 26s "-" ex[(kl' )'9j] *Artj2rtkK2

A- (2r) t

C2 (k -I- k -k2 -k -'K1 2 : )dk d 2ddk212  (14)
z z
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Because of (13), 4)2(.,. ;-) may be rewritten as a product of marginal

characteristic functions. Furthermore, since the surface roughness is a zero

mean process, the marginal characteristic functions will be real and symmetric.

Returning to the integral definition of 6(k -k it may be shown that
2 t t

16(kast-it)I2 should be interpreted as follows;

6(k sk ) lit2  A 6(ks-kt )

Thus, the last term in (14) is recognized to be the magnitude squared of the

mean field, i.e.

( 2(s '-1) ks ki fff • (k 1 , -) tj (ks -kl,-K2 )dk 1 dK1
A (2ff) tz

(15)

and so the variance of the scattered field is as follows;

4. AIr(22 - 2 ) "e

n (2f) ir)
42s- k 9 2 -K2;s t- i t)dk dk21 dK (16)

2 (k_ - k -) 2 , -

where I 2 - (kino/R) 2 , 2 (Ar) ( 2 (Art) - ?2( ) , and

02(. ,. t ) - 2 ; D _ 2.,; exp[j( st-kit). t dAt (16a)

The important point to note about (16) is that 'be iirectional characteristics

of Var(I -) are determined essentially by th- .r transform of if

A 
A

evaluated In the directios k -k . That is, the far field approximation

t t
predicts that the variance of the scattered field is proportional to only one

Fourier component of 42

5-10



The results obtained in this section are not intended to justify the use

of the far field approximation when the surface extent and the illumination

are both unbounded. Rather, this section is intended to serve two other pur-

poses. First, the technique of treating averages as convolutions in stochas-

tic transform space has been introduced and used for the purpose of familiari-

zation. Second and more important is the fact that the onIly approximation con-

tained in this section's results is the far field approximation. Thus, it is

now possible to obtain similar results from the exact expression for the scat-

tered field and compare them with (15) and (16) without having the comparison

tainted by the use of an approximate current. That is, any differences between

(15) and (16) and corresponding exact results will be solely a consequence of

the far field approximation.

Exact Results for Unbounded Illumination

The exact mean scattered field can be obtained without much difficulty

from (1); however, this is not necessary since it can also be derived from

<Is'_j12> , apart from a sign,by the same approach as demonstrated above. The

derivation of a simplified expression for <jEs.ef2> from (1) is also not

difficult but it is involved and normally it would be better to relegate it

to an appendix. However, it does contain a very important simplifying step

and so it will be included in the main text. To avoid a minor difficulty

[Brown, 1982a], surfaces for which decorrelation implies statistical inde-

pendence will be assumed.

Using (1) and the technique of converting averages into convolutions in

transform space yields the following;
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<1 [ri/k 2f.f F{ 11 Ff~ (-k1 - 2 iYi ;rdrse1o/ko 2 1 } 2 ( 2 (-k-2'-Kl1-K2;Art)drt

4. 2s.

*dr ddk2 di /(27r) (17)
2

4. _*I
where At rt r and

F{ }Ii (271  e V xV o x f, kl-B, )G(R t- rtZ - l)exp(i alt )dI da

F{ }2 = (2w)-ev xV x f + f ( t2k22 o')G*(Ro-r 'Z- 2 )exp(a 2 2 )dC2 da2

and R X0 + Y 9 is the horizontal distance from the origin on the surface to

the point of observation. The tilde symbol over J and J* denotes the

Fourier transform with respect to the stochastic variables. Since both the

surface and the illumination are unbounded, (9) may be used along with the

following;

(r t2, k2-a2, K2) = 3r - + 2,-K 2)/

Thus, (17) reduces to the following form;

<1, *_12>- (/ f. f{ VXJ 4( 1 8K)c G ,ZR -r)exp L-jk~ r j C

* {-VoXVox Z(-k2 K )G(Ro Zr 2)exp
[ +i tr 2 +k2o2r] }

2+02''2 0t t2 Z_2 t 2 22

•+- -. 2(s=+l)
-k2 k-Kl ; )d' dr tdd4dddk dkd dK2 (2w) (18)
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00 4

The r t-integration involves only the functions C and (D2" Using the shift

theorem for Fourier transforms and the two-dimensional Fourier transform of
-4

G , the r t-integration may be expressed as follows;

f2 f - k°0(k it -k t)l IZ°-lo C1

fG4 2 exp(-J" %r" )dt -(27t) 2exp(-Jit'R t) fexp[-i lk- -" 2 '
2 t ~ 2i-j 2 ik-(ki -k )

t

" 42 (",-;-k t)exp[J-kt (Rt -It2) dikt  (19)

where the tilde over P2 denotes the transform from Art  to kt  and2 tt2 -)
(kit k)2 (ki Jt-k . Since the point of observation (Xo,Yo,Z0 )

is to be above any realization of the rough surface, 1Zo-Yl = Zo-41 . Sub-

stituting these results in (18) and performing the 1l-integration gives rise

to a delta function, i.e. 6( + +k2 - ( -t ) which makes the 1
t

integration trivial. Thus, remembering that Z must be above the surface,
o

(18) reduces to the following;

< Io 0' I = e0o/ko • 0fvoxvox (kl+4 I) exp [-JZ0 +Jkt% (Rt-r )]/(-2K)

t t) -^V 2 t 2*

exp [ji +JB C -k ) d d dk dkdl / 2 s+3

t 2 t2  (20)

2"- 2 1/2 _+

where K =[k2 - (ki -kt) I . The rt 2-integration in (20) yields the two-

dimensional Fourier transform of G* which contains an exponential term whose
argument is proportional to Z0-421 . Dropping the magnitude sign since Z°

is to always be greater than 12 and performing the 2-integration in (20)

yields a 6-function which simplifies the 82-integration. The result is as
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follows; 2ffffft j-.
< Its e*I' >  { (o/k O)  °V xi xk (k l i K .) exp [-jk Zo-Jkt R ]/(-j2)

t

•a.-VV o x x J-(k-k2+k,-K2 ) exp[-jZ k R ]/(-j2i ) *

0 D 2 19k-K12 - ki)ktA1dk2d K2(7)(1

where k [k 0- k t I] Regularizing the integrand in (21) so that it does

not contain a 6(t -i ) dependence entails subtracting and adding
t it

(D 2 pror to transforming from A t  to kt-ki . Thus, with
t

k2 (''" k 10 (-,2 ( ) - 2 (',;,)Iexp[j(kt-k )A JdAr

tt 
t

and the fact that 2(., - ;ct) may be written as a product of marginal charac-

teristic functions, the regularized form of (21) becomes

k ,0)2rffrf XV 0 x( I

00 +2s +2
" 2 (-k 1'-k 2 .- XK'-K2;kt-k t )dk tdklIdk 2dK IdK2 /(2"r)

+l/ko)2ffffia.VxV xj(kl)4Iti ) o -VXVoXj(k 2,K2k( i tRo)*

_I 2 (D2 2 24 2 .
" 4 1 (-k 1 +Vk -kit -K 1 ) (k2 -]ko - K2 )dkldk 2 d A 2 /(2T) (22)0 1t (22)1 12

A 2
where R- X"+Y + , -(k - k2 , and

00 0 0 0 t
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(k expi- Jk z - J kt 1 0 /(- i 2k) (22a)

The last term in (22) is the magnitude squared of the mean scattered field,

s . >[ 2 , and the following operations demonstrate this fact. Since :DI is

real and symmetric in all transform variables, the last term in (22) which re-

sults from regularizing (21) is recognized to be the product of one set of

integrals and its complex conjugate. Thus, it may be expressed as follows;

t t

Sdk 1 dKl /(27r) (23)

4.The function I(kitR ) is independent of k and K and is a plane wave. The
2 t 2 1/2 (1 t )

root of (ko-k ) must be chosen such that *(k1 ,R o) Is upward traveling

because Z is positive; this dictates the following form for 4(ki ,Ro)
0 it

(i = exp[-jlki zI Z0 - JkitR 0/(-j 21k, 1 ) (24)

where the magnitude signs on kiz are used because, according to (3), ki -< 0
1 1Z

The quantities V xV x j4 may be manipulated using vector identities into the

form

V xVx i, -k [p T + (T.V)VP (25)

By expanding the vector operations in (25) with the aid of (24), it may be

shown that

Vo 0 X V 0 x 1]o k2cosei)

where 0 is the angle of incidence measured with respect to the z-axis,
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S

kusatut torin re helspncular adirctin. i's e. ild
5s

s = (k i  a+ tk i z 1 )/I (k + IkizId

and

' ' = exp-j k 0R 0  k sk

Substituting these results in (23) and taking *k5 = 0 yields

(26)

and it can be shown that the expression inside the magnitude brackets is iden-

tical, except for a minus sign, to the average of E - obtained from (1).S

Substracting (26) from (22) gives the following relationship for the variance

of the scattered field;

Var(E S) ( j k 0 )2ffffj e { o xV x (kjk-,l) (k t) PR 0 .VoXVoX3(-k 2 k,'-K2)

2s +2

(27)

Unfortunately, the integrations in (26) and (27) cannot be accomplished in

general without knowledge of T, c 1 , and 4) 2 .

The important point to remember about (26) and (27) is that they are both

exact results. Furthermore, it is not necessary for the point of observation

R to be infinitely far from the surface. The only restriction on these

results is that the point of observation be above any realization of the surface.

Comparison of Exact and Far Field Results

Equations (15) and (16) are results obtained using only the far field

approximation while (26) and (27) are exact. A comparison of the two sets will
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show how the far field approximation breaks down when both the surface and

the illumination are unbounded.

The exact result for the mean scattered power, i.e. (26), shows that the

mean scattered field is a plane wave propagating in the specular direction,

ks = k and = -k. . Furthermore, it can be shown that (26) yields
5 5 S It i z z
the correct reflected power when the random surface goes to a plane. The far

field approximation for <E *e> , i.e. (10), yields a spherical wave with anS

amplitude weighting such that it is nonzero only in the specular direction.

In the limit of the random surface approaching a plane, the far field approxi-

mation does not reduce to a reflected plane wave traveling in the specular

direction. It is interesting to note that although the far field approximation

does not produce the plane wave nature of the scattered field, it does contain

the proper dependence upon the statistical properties of the surface because

in the specular direction ks ='k zi
z

Equation (26) does not provide any insight into the polarization of the

mean scattered field; the polarization is determined entirely by the transformed

current T(kli ) If there is no significant multiple scattering occurring

on the rough surface then <E > will have the same polarization as a field
s

reflected from a perfectly flat surface. In this case <E > will have all ofs

the characteristics of a specularly reflected field except that it will be

attenuated by the effects of the surface roughness. If multiple scattering is

significant, the polarization of <E > will be different from that of a planars

surface reflected field. This result shows that, contrary to previous thoughts

[Moore and Williams, 1957], the mean scattered field is not governed by the

laws of reflection if multiple scattering on the surface is significant.

Furthermore, it is not advisable to refer to the mean scattered field as a
4

specular field since <E > does not always have the characteristics of a true

specularly reflected field.
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According to (16) the variance of the scattered field is linearly related

to the illuminated area and inversely proportional to the second power of the

distance from the origin on the surface to *he point of observation. More

importantly however is the fact that the variance is determined by the Fourier

transform of the regularized characteristic function evaluated at k -ki
S
t t

i.e. see (16) and (16a). This is a direct consequence of the fact that if one

represents the scattered field in terms of an angular spectrum of plane waves

(Clemwtw, 1966], the far field approximation leads to a scattered field which

is determined by one and only one angle or direction in the spectral represen-

tation. In terms of the variance of the scattered field, this means that one

obtains a result which is determined by one and only one Fourier component

of the regularized characteristic function. Contrast this result with the exact

result as given by (27) in which the variance of the scattered field is deter-

mined by a weighted integral of all Fourier components of the regularized

characteristic function. In fact, the very presence of the kt-integration in

(27) shcws that there is no such thing as a far field for the case of unbounded

illumination regardless of how far the point of observation is moved away from

the surface. For example, by moving the point of observation away from the

surface one merely sees less of the surface waves propagating along the surface.

In fact, in the limit of Ro- +o the kt-integration in (27) is essentially

_12 2 0
limited to the visible range (k <k ) because of the i(k tRo ) function;

but Var(Es.) is still determined by a weighted integral of all Fourier

components of Z2 over the visible range of wavenumbers. As an aside, it

should be noted that although one does not observe any surface waves as R 0
0

they still influence the result through the transformed current j . As a

final point, it can be shown that (27) goes to the proper limits in the cases

of a planar surface or a randomly elevated planar surface whereas (16) does not.
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It would be very beneficial if the k -integration in (27) could be accom-t

plished without explicit knowledge of either I orb2 ' However, this is not

possible primarily because the convergence of the integral is hlighlv dependent

upon j and '2 - This can be seen by noting that if the j's and are set to

unity, the k t -integration is exactly equal to the integral of ite'o × ' C(R o )] i

over the x-y plane and this integral does not converge.

It is certainly not surprising that the far field approximation falls when

the incident illumination is unbounded. In the case of the mean scattered

field, it has been shown that the effects of the surface roughness are correctly

predicted by the far field approximation. However, for the variance of the

scattered field there is a very fundamental difference between the far field

results and the exact results and so the far field approximation is essentially

useless.

Bounded Illumination

With the exception of certain fundamental theoretical questions, the case

of bounded incident illumination is of most interest. Remembering that the

intent here is to obtain general results which do not depend on explicit approxi-

mate forms for the surface current, the bounding of the illumination causes a

problem because the separation in (9) is no longer valid. In order to under-

stand this difficulty and investigate appropriate approximations, it is neces-

sary to turn to the stochastic Fourier transformed magnetic field integral

equation for the modified current J [Brown, 1982b]. This equation is obtained

by multiplying the magnetic field integral equation by exp[jk c + j t V l .n]

1 n-zl n+l

and then averaging over all stochastic surface characteristics VnCn=0,1,' ''

The averages are converted to convolutions in stochastic transform space and

one obtains an infinite dimensional integral equation of the first kiid having
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the following form;

=J (kk 2) ()exp(-jk *r) + (27r) X ( o, k
01V2 9( exL ji tt( o-22t

C 2 (k -3 , - k 2 ,-22 ,'' ' ; A ) (-Ar, 1 , 2 ,
' ' dAr d2-did2

(28)

-.

The tii e over J denotes the stochastic Fourier transform (from Vn space

44

to spacc), J is the transform of the stochastic part of the physical

optics current due to the incident field, i.e. 2fi XH. , and X is a dyadic1

kernel involving stochastic transforms of Green's function derivatives. When

the illumination is unbounded so that O(r )=1 for all r , it is obvious

that (9) is valid. However, when the support of the incident illumination is

finite, the dependence of J on rt  is very difficult to obtain. The Fourier

4.
transform of (28) with respect to r yields

(2J) " (9B 1,42,'')Dl(k-l, k2- 2,' ')d Ida2 . 0 (klk2)o(kt-ki)
t

+ (2r) k k k

0 k 2 .")dBid 2"* (29)

It is tempting to assume that J can be expressed as a product of a k t-dependent

function and one which depends upon 01112,.. However, there is no reason

for this form to be valid in general because Xc( 2 cannot similarly be expressed

as a product. In fact, it is the presence of the integral term on the rhs of
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(29) which greatly complicates matters. This term is important when multiple

scattering on the surface is significant; in the absence of multiple scatter-

ing J has the same r -dependence as the incident illumination. When there
tZ

is strong multiple scattering present, the kt-dependence of Jt in (29) is

influenced by the statistical properties of the surface through (D2  in (29).

This result has a simple physical explanation in that multiple scattering

implies that the current at any point on the surface is determined by the behav-

ior of the surface in a neighborhood of the point; thus, the support )f the

current on the surface will differ from the projected area of the incident

illumination. One may also visualize the multiple scattering process in terms

of rays undergoing at least two reflections on the surface before traveling

off into free space; consequently, there will be some rays reflected to the sur-

face outside of the incident illumination support. What this all means is

that the r t-dependence or the support of the transformed current is determined

both by the incidence illumination and the surface roughness when multiple

scattering is important.

To overcome this difficulty and yet not reduce the problem to the trivial

case of single scattering, it is necessary to assume that the support of the

incident illumination projected on the z -G plane is very large compared to

A2 " If this is true then 6(tt-kit) will be very sharply peaked dbout

t
kt -k and J must then necessarily have the same dependence. Physically,

this approximation implies that the illuminated area is so large that there is

little relative difference between the projected area of the incident wave and

the true illuminated area including multiple scattering. Thus, as long as the

cross sectional area of the incident beam plane wave projected onto the z - 0

2plane is large compared to 2 0 (29) shows that
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J(rt,kl,K) - J(kl,K) 0(rt)exp(-jk i t.r) (30)
t

is a valid approximation.

Equation (30) is a very important result but one must be careful to under-

stand what it does and does not imply. Equation (30) can be used to compute

the statistical moments of the scattered field; it cannot be used to infer the

sample-by-sample behavior of the scattered field. Thus, just because J has

a finite support does not mean that one may use (2), i.e. the far field approxi-
.+

mation, rather than (1), i.e. the exact expression for E , because the actuals

support of the sample-by-sample current may vary significantly from O(r .

This is a point that must be remembered when attempting to make far field mea-

surements of the field scattered by a rough surface. That is, if one bases

the far field condition on O(r ) , it must be realized that there may well be

some samples of E which do not satisfy this condition. Thus, one would be

well advised in a measurement program to exceed any distances based on O(r t).

As it turns out, the statistical moments of the scattered field are the

same regardless of whether cne uses (1) or (2) in conjunction with (30). How-

ever, as noted above there is no rigorous justification for starting with (2).

Furthermore, there is a very important point in the development starting with

(1) which shows why the far field approximation fails when the illumination is

unbounded. To simplify matters, the development will be carried thru for the

mean scattered field, however, the principles apply also to all the moments of

the scattered field.

Using 1(,)dr for I (r)dS, the average scattered field from (1) is
t s

given by

4 (k )> - V V x I -rl )> dr t  (31)

0 0J
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whe re

<J(r)G(iR0-r)> - ff ,J.,3)G(j0 Jrj , Zo-)p 1 ( ,a)drd(Dl) (32)

Converting the integrals in (32) to convolutions in stochastic Fourier trans-

form space yields the following;

< > (2T) J(rt kl-a )G°  I' -rti z° - o-~ ~ (2)C~ ff~f t 0 tZ-~

exp(j8o)1 (-ki-)d~daadk dK

Substituting from (30) yields;

- (s +1) 4.
<>= (2k) ff J(k 0 , K -k1 .-K O'r )G(IR 0  t-t, Zo-0 )

ex(jk + jg)dgd~dkldK (33)
exp (- J k i or t + iod$0 kIA(3

Inserting this expression in (31) and rearranging integrations yields the

following rt-integral;

fo (t)GO 0 -rtj 0Zo - )exp (-Jkt t)d ttt

which may be rewritten as a convolution of transforms, i.e.

-2 f +It ,)((2w) fe(-k +k t)G(t , Z-r,)exp(-J~tk * )d t

t

-2 f-2_Z
(21r) Ok _ ki )excpE-iktt t - j~T'I I Z iz-C (-J240:0) d()

(34)

Taking Z to always be above the surface implies I - l -Zo - "

The resulting dependence of the rhs of (34) on R corresponds to a generalized
0 *
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plane wave, consequently, the curl curl operation in (31) may be simplified

to the following;

V XV X ( ) - -k ( J)

Substituting these results in (33) and (31) yields

0 0 f o 0

tt

k exp[-jiko t kt7+ Nzo +k t

. s s+3
• dkthde dkdK'l2t) (35)

Since for any realization of the surface Z > I , the dominant terms in the
okt-integra0ion are 0 and the exponential factor containing o For any

ts +3

0(' t) having finite support it is always possible to take R large enough

that the k t-integral can be asymptotically evaluated via the method of steepest

descent [Clemmow, 1966]. However, if O(rt ) has infinite support then it
-9-

dominates the k -integration because k t- ) .(it-i ) Since use of
tt i t i

t t
the steepest descent method corresponds to the far field approximation

[Clemow, 1966], it is clear that the validity of the far field approximation

is entirely dependent upon which of these factors is dominant in the kt-integral.

It is also interesting to note that the kt-integration is essentially of the

sme form that Hansen and Bailin [1959] studied for the case of a uniformly
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illuminated deterministic circular aperture. They found that the far field

approximation is valid for R where D is the diameter of the aper-

2 2 +
ture. Thus, for R D A0 and 70/2) >> X , the k -integration in (35)

may be asymptotically evaluated using the method of steepest descent. Follow-

ing this, one completes the and a°  integrations in (35) to yield

<S 4' s s
Es(R0o)> -jkr0 q0 G(R ) O ( k s - k i t )k s x x ff .k1 ~ 5  ,iK) >1 (-kl,-K)dkldK/(2r)

(36)

where k is a unit vector in the direction of the point of observations

(R 0 Rk s) and k f k 0" k is the product of k and the z-component of
z

this unit vector.

This same asymptotic approach may be used to obtain an approximate expres-

sion for the variance of the scattered. To account for the limited extent of

the incident illumination, it is sufficient to replace j by O( t and

J by O te ) in (18). One then uses the steepest descent method in

k-space to first evaluate the rt -integral and then the r t2-integral. Asymp-
-44

totic evaluation of the r -integral leads to the following k-space integra-
tl

tion;

f d t - it+2)k, (2)exp( j _k2  )dk 2

If the illuminated area encompasses many correlation lengths then 0 is very

sharply peaked relative to 42 and the above integral may be approximated

as follows;

2sA _t 6 I(kst1 ki exp (iJkrt )d '(k 8 A
Z_ ~ (8 t2ep J (t st i

t) 2 t 2 ]2 28

EO(r )exp i -k ).rj
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Combining the r t2-dependent terms from this result with the remaining rt2

factors in (18) and expressing the r -integral as a convolution in k-spacet 2

yields the following integral;

f k - -Z exp (j 0 dR

When this integral is evaluated by the steepest descent method, one obtains

a result proportional to e 2 (o) which, for uniform illumination, is equal to

the illuminated area. The final result for the variance of the scattered field

is identical to (16) except that the illuminated area A is finite. Once

again, It is the interplay between the Green's function and the illumination

support that determines the suitability of the far field approximation.

It should be emphasized that these results are very general in that they

do not depend on any special approximation for the current induced on the rough

surface. However, these results are only valid if the cross sectional area of

the incident illumination beam, as projected onto the z =0 plane, is very

2large compared to A . This simplification minimizes the error due to the

difference between the illumination area and the true area on the surface over

which the current is nonzero. Furthermore, in the case of the variance of the

scattered field, it is also necessary to stipulate that the illuminated area

contain very many decorrelation intervals of the surface roughness in order to

recover (16). When this simplifying requirement is not met, the problem becomes

more difficult and will be left to future studies.
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